Abstract

Further improvements in aero-engine efficiencies require accurate prediction of flow physics and incurred loss. Currently, the computational requirements for capturing these are not known leading to inconsistent loss predictions even for scale-resolving simulations depending on the chosen convergence criteria. This work investigates two aspects of loss generation using high-fidelity simulation. In the first case study, we look at the effect of resolution on capturing entropy generation rate by simulating a Taylor-Green vortex canonical flow. The second case study focuses on the effect of resolution on flow physics and loss generation and uses a compressor cascade subjected to freestream turbulence. The results show that both resolving local entropy generation rate and capturing the inception and growth of instabilities are critical to accuracy of loss prediction. In particular, the interaction of free-stream turbulence at the leading-edge and development of instabilities in the laminar region of the boundary layer are critical to capturing loss.

References

1.
Kim
,
J.
,
Parviz
,
M.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow At Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
. 10.1017/S0022112087000892
2.
Zang
,
T. A.
,
Krist
,
S. E.
, and
Hussaini
,
M. Y.
,
1989
, “
Resolution Requirements for Numerical Simulations of Transition
,”
J. Sci. Comput.
,
4
(
2
), pp.
197
217
. 10.1007/BF01061501
3.
Souza
,
L. F.
,
Mendonca
,
M. T.
, and
Medeiros
,
A. F.
,
2005
, “
The Advantages of Using High-Order Finite Differences Schemes in Laminar-Turbulent Transition Studies
,”
Int. J. Numer. Meth. Fluids
,
48
(
5
), pp.
565
582
. 10.1002/fld.955
4.
Geurts
,
B. J.
, and
Fröhlich
,
J.
,
2002
, “
A Framework for Predicting Accuracy Limitations in Large-Eddy Simulation
,”
Phys. Fluids.
,
14
(
6
), pp.
41
44
. 10.1063/1.1480830
5.
Celik
,
I.
,
Klein
,
M.
,
Freitag
,
M.
, and
Janicka
,
J.
,
2006
, “
Assessment Measures for URANS/DES/LES: An Overview With Applications
,”
J. Turbulence
,
7
, p.
48
. 10.1080/14685240600794379
6.
Gullbrand
,
J.
, and
Chow
,
F. K.
,
2002
, “
Investigation of Numerical Errors, Subfilter-Scale Models, and Subgrid-Scale Models in Turbulent Channel Flow Simulations.
Annual Research Brief (Center for Turbulence Research)
.
7.
Klein
,
M.
,
2005
, “
An Attempt to Assess the Quality of Large Eddy Simulations in the Context of Implicit Filtering
,”
Flow, Turbul. Combust.
,
75
(
1–4
), pp.
131
147
. 10.1007/s10494-005-8581-6
8.
Rezaeiravesh
,
S.
, and
Liefvendahl
,
M.
,
2018
, “
Effect of Grid Resolution on Large Eddy Simulation of Wall-Bounded Turbulence
,”
Phys. Fluids.
,
30
(
5
), p.
055106
. 10.1063/1.5025131
9.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
. 10.1017/S0022112001005717
10.
Wissink
,
J. G.
,
2003
, “
Dns of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
J. Heat and Fluid Flow
,
24
(
4
), pp.
626
635
. 10.1016/S0142-727X(03)00056-0
11.
Zaki
,
T. A.
,
Durbin
,
P. A.
, and
Wu
,
X.
,
2006
, “
Separation and Transition to Turbulence in a Compressor Passage.
Center for Turbulence Research Proceedings of the Summer Program
.
12.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Durbin
,
P. A.
, and
Rodi
,
W.
,
2009
, “
Direct Computations of Boundary Layers Distorted by Migrating Wakes in a Linear Compressor Cascade
,”
Flow, Turbulence and Combustion
,
83
(
3
), pp.
307
322
. 10.1007/s10494-009-9216-0
13.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulation of Transition in a Compressor Cascade: the Influence of Free-stream Turbulence
,”
J. Fluid. Mech.
,
665
, pp.
57
98
. 10.1017/S0022112010003873
14.
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “Compressible DNS of a Low Pressure Turbine Subjected to Inlet Disturbances.”
Fröhlich
J.
,
Kuerten
H.
,
Geurts
B.
,
Armenio
V.
(eds) Direct and Large-Eddy Simulation IX. ERCOFTAC Series, vol
20
. Springer.
15.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbine: Part II—Effect of Inflow Disturbances
,”
ASME. J. Turbomach.
,
137
(
7
), p.
071005
. 10.1115/1.4029126
16.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulation of a High Pressure Turbine Vane
,”
ASME. J. Turbomach.
,
138
(
7
), p.
071003
. 10.1115/1.4032435
17.
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2016
, “
Assessment of Grid Resolution Requirements for Accurate Simulation of Disparate Scales of Turbulent Flow in Low-Pressure Turbines.
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition.
Volume 2C: Turbomachinery.
Seoul, South Korea
. June 13–17. V02CT39A030. ASME.
18.
Wheeler
,
A. P. S.
,
Dickens
,
A. M. J.
, and
Miller
,
R. J.
,
2018
, “
The Effect of Non-Equilibrium Boundary Layers on Compressor Performance
,”
ASME. J. Turbomach
,
140
(
10
), p.
101003
. 10.1115/1.4040094
19.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulation of Compressible Viscous Flows
,”
J. Comput. Phys.
,
10
(
1
), pp.
104
129
. 10.1016/0021-9991(92)90046-2
20.
Phillips
,
L.
, and
Fyfe
,
D.
,
2011
,
Turbid: a Routine for Generating Random Turbulence Inflow Data. Technical Report, Naval Research Laboratory
.
21.
van Rees
,
M.
,
Leonard
,
A.
,
Pullin
,
D. I.
, and
Koumoutsakos
,
P.
,
2011
, “
A Comparison of Vortex and Pseudo-Spectral Methods for the Simulation of Periodic Vortical Flows At High Reynolds Number
,”
J. Comput. Phys.
,
230
(
8
), pp.
2794
2805
. 10.1016/j.jcp.2010.11.031
22.
DeBonis
,
J. R.
,
2013
, “
Solutions of the Taylor-Green and Vortex Problem and Using and High-Resolution Explicit and Finite Difference and Methods.
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Paper No. AIAA 2013-382
.
23.
de Wiart
,
C. C.
,
Hillewaert
,
K.
,
Duponcheel
,
M.
, and
Winckelmans
,
G.
,
2014
, “
Assessment of a Discontinuous Galerkin Method for the Simulation of Vortical Flows At High Reynolds Number
,”
J. Numer. Meth. Fluids
,
74
(
7
), pp.
469
493
. 10.1002/fld.3859
24.
Bull
,
J. R.
, and
Jameson
,
A.
,
2015
, “
Simulation of the Taylor-Green Vortex Using High-Order Flux Reconstruction Schemes
,”
AIAA J.
,
53
(
9
), pp.
2750
2761
. 10.2514/1.J053766
25.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME. J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
26.
Mortensen
,
M.
, and
Langtangen
,
H. P.
,
2016
, “
High Performance Python for Direct Numerical Simulations of Turbulent Flows
,”
Comput. Phys. Commun.
,
203
, pp.
53
65
. 10.1016/j.cpc.2016.02.005
27.
Matsubara
,
M.
, and
Andersson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid. Mech.
,
430
, pp.
149
168
. 10.1017/S0022112000002810
28.
Andersson
,
P. H.
,
Berggren
,
M.
, and
Henningson
,
D. S.
,
1999
, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids.
,
11
, pp.
134
. 10.1063/1.869908
29.
Tam
,
C. K. W.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Aeroacoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
. 10.1006/jcph.1993.1142
You do not currently have access to this content.