Abstract

The relationship between the tip clearance flow (TCF) and the blade vibration in the lock-in region was numerically investigated on a transonic rotor. Both the bending (1B) and torsional (8th) modes were analyzed under 0 ND. The time marching method and a single-passage model were used, which were verified by citing and comparing with the results in references. The phase of the TCF (referring to the phase difference between the unsteady pressure caused by the TCF and the blade vibration) changed with the frequency ratio in the lock-in region. The strength of the TCF was influenced slightly by the blade vibration amplitude. A separation method of the unsteady pressure caused by the TCF and the blade vibration was developed and verified at different conditions. The unsteady pressure of nonsynchronous vibration (NSV) was separated into the components of the TCF and the blade vibration under the 1B and 8th modes. The unsteady pressure component of the TCF changed little with the vibration amplitude and mainly existed in the tip area. The unsteady pressure component of the blade vibration was larger at part spans and its distribution depended on the modal shape and the vibration amplitude. The unsteady pressure components of the TCF and the blade vibration determined the aerodynamic work/damping in the lock-in region. The aerodynamic work components of the TCF and the blade vibration increased linearly and at a rate of the square with the vibration amplitude, respectively. TCF was dominant in the initial stage of vibration. With the vibration amplitude increasing, the aerodynamic work done by the unsteady pressure component of the blade vibration gradually caught up. The aerodynamic damping of the TCF changed with the phase of the TCF. TCF provided positive damping at some phases and negative damping at other phases. In the initial stage of vibration, the system was stable at the phases TCF providing positive damping and unstable at the phases of negative damping. NSV occurred only when TCF provided negative damping and the unsteady pressure component of the blade vibration provided positive damping. If the aerodynamic damping of the blade vibration was negative, the vibration would be enlarged until failure. Regardless of other damping forms, the maximum amplitude of NSV can be obtained by calculating the balance of the aerodynamic work. For the 8th mode, the limit amplitude under 0 ND was 0.0926%C, which corresponded to vibration stress of about 60 MPa.

References

1.
Mathioudakis
,
K.
, and
Breugelmans
,
F. A. E.
,
1985
, “
Development of Small Rotating Stall in a Single Stage Axial Compressor
,” ASME Paper No. 85-GT-227.
2.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,”
12th International Symposium on Airbreathing Engines
,
Melbourne
,
Sept. 10–15
.
3.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,” ASME Paper No. GT2003-38634.
4.
Im
,
H.
, and
Zha
,
G.
,
2014
, “
Investigation of Flow Instability Mechanism Causing Compressor Rotor-Blade Nonsynchronous Vibration
,”
AIAA J.
,
52
(
9
), pp.
2019
2031
.
5.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
463
.
6.
Mailach
,
R.
,
Sauer
,
H.
, and
Vogeler
,
K.
,
2001
, “
The Periodical Interaction of the Tip Clearance Flow in the Blade Rows of Axial Compressors
,” ASME Paper No. 01-GT-0299.
7.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise Generation in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
.
8.
Mäerz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instabilities
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
375
.
9.
Pardowitz
,
B.
,
Tapken
,
U.
,
Neuhaus
,
L.
, and
Enghardt
,
L.
,
2015
, “
Experiments on an Axial Fan Stage: Time-Resolved Analysis of Rotating Instabilities Modes
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062505
.
10.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instabilities in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
11.
Vo
,
H. D.
,
2010
, “
Role of Tip Clearance Flow in Rotating Instabilities and Nonsynchronous Vibrations
,”
J. Propul. Power
,
26
(
3
), pp.
556
561
.
12.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
13.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2001
, “
Comparative Studies on Short and Long Length-Scale Stall Cell Propagating in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
123
(
3
), pp.
24
30
.
14.
Inoue
,
M.
,
Kuromaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
,
2004
, “
Effects of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,” ASME Paper No. GT2004-5335.
15.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
16.
Brandstetter
,
C.
,
Juengst
,
M.
, and
Schifffer
,
H. P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
17.
Han
,
L.
,
Wei
,
D. S.
,
Wang
,
Y. R.
,
Zhang
,
X. B.
, and
Zhang
,
X. J.
,
under review
, “
Numerical Investigation on Tip Clearance Flow Instabilities in Axial Transonic Compressor Rotors
,”
ASME J. Turbomach.
18.
Williamson
,
C.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6
), pp.
713
735
.
19.
Chen
,
J.
, and
Fang
,
Y. C.
,
1998
, “
Lock-On of Vortex Shedding Due to Rotational Oscillations of a Flat Plate in a Uniform Stream
,”
J. Fluids Struct.
,
12
(
6
), pp.
779
798
.
20.
Zhu
,
B.
,
Lei
,
J.
, and
Cao
,
S.
,
2007
, “
Numerical Simulation of Vortex Shedding and Lock-In Characteristics for a Thin Cambered Blade
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1297
1305
.
21.
Spiker
,
M.
,
Kielb
,
R.
,
Thomas
,
J.
, and
Hall
,
K. C.
,
2009
, “
Application of Enforced Motion to Study 2-D Cascade Lock-In Effect
,” AIAA Paper No. 2009-892.
22.
Poirel
,
D.
,
Métivier
,
V.
, and
Dumas
,
G.
,
2011
, “
Computational Aeroelastic Simulations of Self-Sustained Pitch Oscillations of a NACA0012 at Transitional Reynolds Numbers
,”
J. Fluids Struct.
,
27
(
8
), pp.
1262
1277
.
23.
Young
,
J.
, and
Lai
,
J. C. S.
,
2007
, “
Vortex Lock-In Phenomenon in the Wake of a Plunging Airfoil
,”
AIAA J.
,
45
(
2
), pp.
485
490
.
24.
Ashraf
,
M. A.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2012
, “
Oscillation Frequency and Amplitude Effects on Plunging Airfoil Propulsion and Flow Periodicity
,”
AIAA J.
,
50
(
11
), pp.
2308
2324
.
25.
Besem
,
F. M.
,
Kamrass
,
J. D.
,
Thomas
,
J. P.
,
Tang
,
D.
, and
Kielb
,
R. E.
,
2015
, “
Vortex-Induced Vibration and Frequency Lock-In of an Airfoil at High Angles of Attack
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011204
.
26.
Han
,
L.
,
Wei
,
D. S.
,
Wang
,
Y. R.
, and
Fang
,
M. C.
,
2021
, “
Lock-In Phenomenon of Tip Clearance Flow and Its Influence on Aerodynamic Damping Under Specified Vibration on an Axial Transonic Compressor Rotor
,”
Chin. J. Aeronaut.
27.
Gan
,
J. Y.
,
Im
,
H. S.
,
Espinal
,
D.
,
Lefebvre
,
A.
, and
Zha
,
G. C.
,
2014
, “
Investigation of a Compressor Rotor Nonsynchronous Vibration With and Without Fluid–Structure Interaction
,” ASME Paper No. GT2014-26478.
28.
Gan
,
J. Y.
,
Im
,
H. S.
, and
Zha
,
G. C.
,
2017
, “
Numerical Examination of Lock-In Hypothesis of Non-Synchronous Vibration in an Axial Compressor
,” ASME Paper No. GT2017-65244.
29.
Espinal
,
D.
,
Im
,
H. S.
, and
Zha
,
G. C.
,
2018
, “
Full-Annulus Simulation of Nonsynchronous Blade Vibration Excitation of an Axial Compressor
,”
ASME J. Turbomach.
,
140
(
3
), p.
031008
.
30.
Holzinger
,
F.
,
Wartzek
,
F.
,
Juengst
,
M.
,
Schiffer
,
H. P.
, and
Leichtfuss
,
S.
,
2016
, “
A Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Rotating Instabilities and Flutter
,”
ASME J. Turbomach.
,
138
(
4
), p.
041006
.
31.
Möeller
,
D.
,
Jüengst
,
M.
,
Holzinger
,
F.
,
Brandstetter
,
C.
,
Schiffer
,
H. P.
, and
Leichtfuss
,
S.
,
2017
, “
Mechanism of Nonsynchronous Blade Vibration in a Transonic Compressor Rig
,”
ASME J. Turbomach.
,
139
(
1
), p.
011002
.
32.
Möeller
,
D.
,
Jüengst
,
M.
,
Schiffer
,
H. P.
,
Giersch
,
T.
, and
Heinichen
,
F.
,
2018
, “
Influence of Rotor Tip Blockage on Near Stall Blade Vibrations in an Axial Compressor Rig
,”
ASME J. Turbomach.
,
140
(
2
), p.
021007
.
33.
Han
,
L.
,
Wang
,
Y.
,
Zhang
,
X. J.
, and
Wei
,
D. S.
,
2018
, “
Non-Synchronous Vibration Caused by Unsteady Tip Clearance Flow With Consideration of Aerodynamic Damping in a Transonic Rotor
,” ISUAAAT15 No. ISUAAAT15-100.
34.
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2009
, “
Blade Tip Clearance Flow and Compressor Nonsynchronous Vibrations: The Jet Core Feedback Theory as the Coupling Mechanism
,”
ASME J. Turbomach.
,
131
(
1
), p.
011013
.
35.
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2011
, “
The Tip Clearance Flow Resonance Behind Axial Compressor Nonsynchronous Vibration
,”
ASME J. Turbomach.
,
133
(
4
), p.
041030
.
36.
Drolet
,
M.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2013
, “
Effect of Tip Clearance on the Prediction of Nonsynchronous Vibrations in Axial Compressors
,”
ASME J. Turbomach.
,
135
(
1
), p.
011023
.
37.
Zhang
,
X. W.
,
Wang
,
Y. R.
, and
Xu
,
K. N.
,
2012
, “
Mechanisms and Key Parameters for Compressor Blade Stall Flutter
,”
ASME J. Turbomach.
,
135
(
2
), p.
024501
.
38.
Fu
,
Z. Z.
,
Wang
,
Y. R.
,
Jiang
,
X. H.
, and
Wei
,
D. S.
,
2014
, “
Tip Clearance Effects on Aero-Elastic Stability of Axial Compressor Blades
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012501
.
39.
Han
,
L.
,
Wang
,
Y. R.
,
Zhang
,
X. B.
,
Zhang
,
X. J.
, and
Wei
,
D. S.
,
2017
, “
Effect of Casing Shape Surrounded Rotor on Aerodynamic Performance of a Transonic Fan
,” AIAA Paper No. 2017-4637.
40.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
.
41.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
42.
Barth
,
T. J.
, and
Jesperson
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. 1989-0366.
43.
Sanders
,
A. J.
,
2005
, “
Nonsynchronous Vibration (NSV) Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,”
ASME J. Turbomach.
,
127
(2), pp.
412
421
.
44.
Brandstetter
,
C.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2019
, “
Compressible Modal Instability Onset in an Aerodynamically Mistuned Transonic Fan
,”
ASME J. Turbomach.
,
141
(
3
), p.
031004
.
45.
Moeller
,
D.
, and
Schiffer
,
H. P.
,
2021
, “
On the Mechanism of Spike Stall Inception and Near Stall Nonsynchronous Vibration in an Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021007
.
You do not currently have access to this content.