Abstract

The matching and interaction between the impeller and vaned diffuser is the most important aerodynamic-coupling between the components of a high-speed centrifugal compressor. Many research studies have been carried out during the last decade, both experimentally and numerically, on the flow mechanisms underlying impeller–vaned diffuser matching and interaction, with the aim of achieving a high-performance stage. However, the published work lacks any study that optimizes the matching of the impeller–vaned diffuser components in the environment of a full compressor stage due to two unresolved issues, i.e., identifying an effective matching optimization strategy and the high dimensional nature of the problem. To tackle these difficulties, four different optimization strategies (i.e., (1) integrated, (2) single component, (3) parallel, and (4) sequential optimization strategies) have been proposed and validated through a high dimensional matching optimization of the Radiver compressor test case published by the Institute of Jet Propulsion and Turbomachinery at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University. Particular attention has been paid to the slope of the diffuser total pressure ratio characteristic near the surge point to further extend the stage surge margin. The results showed that the integrated optimization strategy was the most effective one for achieving good matching of the impeller–vaned diffuser interaction due to its inherently strong coupling optimization. Compared with the baseline compressor, the optimized stage achieved a gain of 1.2% in total-to-total isentropic efficiency at the peak efficiency point as well as a predicted 26.17% increase in stable operating range. For the stage examined in this study, a fore-loaded design of impeller blade as well as an increased vane angle for the diffuser vane was beneficial to the impeller–vaned diffuser matching. The more uniform spanwise distributions of the impeller discharge flow angle and the diffuser vane incidence presented the opportunity for a more optimized matching of the flow field between the 3D impeller and the 2D vaned diffuser. The outcomes of this work are particularly relevant for the advanced design of high-speed centrifugal compressors.

References

1.
Shum
,
Y. K. P.
,
Tan
,
C. S.
, and
Cumpsty
,
N. A.
,
2000
, “
Impeller—Diffuser Interaction in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
122
(
4
), pp.
777
786
. 10.1115/1.1308570
2.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2012
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
. 10.1115/1.4006533
3.
Fujisawa
,
N.
,
Inui
,
T.
, and
Ohta
,
Y.
,
2019
, “
Evolution Process of Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
141
(
4
), p.
041009
. 10.1115/1.4042249
4.
Galloway
,
L.
,
Spence
,
S.
,
In Kim
,
S.
,
Rusch
,
D.
,
Vogel
,
K.
, and
Hunziker
,
R.
,
2017
, “
An Investigation of the Stability Enhancement of a Centrifugal Compressor Stage Using a Porous Throat Diffuser
,”
ASME J. Turbomach.
,
140
(
1
), p.
011008
. 10.1115/1.4038181
5.
Deniz
,
S.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
2000
, “
Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers : Part 2—Straight- Channel Diffuser
,”
ASME J. Turbomach.
,
122
(
1
), pp.
11
21
. 10.1115/1.555424
6.
Everitt
,
J. N.
,
Spakovszky
,
Z. S.
,
Rusch
,
D.
, and
Schiffmann
,
J.
,
2017
, “
The Role of Impeller Outflow Conditions on the Performance of Vaned Diffusers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041004
. 10.1115/1.4035048
7.
Gallier
,
K.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2010
, “
Particle Image Velocimetry Characterization of High-Speed Centrifugal Compressor Impeller-Diffuser Interaction
,”
J. Propuls. Power
,
26
(
4
), pp.
784
789
. 10.2514/1.38663
8.
Cukurel
,
B.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2011
, “
Experimental Transonic Centrifugal Compressor Investigation: Loading Effects on Deterministic Diffuser Velocity Fields
,”
J. Propuls. Power
,
27
(
2
), pp.
296
305
. 10.2514/1.45697
9.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
. 10.1115/1.1516814
10.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
(
1
), pp.
183
192
. 10.1115/1.1516815
11.
Huang
,
Q. Q.
, and
Zheng
,
X. Q.
,
2017
, “
Potential of Variable-Geometry Method for Compressor Range Extension for Turbocharged Engines
,”
J. Propuls. Power
,
33
(
5
), pp.
1197
1206
. 10.2514/1.B36004
12.
Casey
,
M.
, and
Rusch
,
D.
,
2014
, “
The Matching of a Vaned Diffuser With a Radial Compressor Impeller and Its Effect on the Stage Performance
,”
ASME J. Turbomach.
,
136
(
12
), p.
121004
. 10.1115/1.4028218
13.
Van den Braembussche
,
R. A.
,
2006
, “Optimization of Radial Impeller Geometry,” NATO Res. Technol. Organ, RTO-EN-AVT-143.
14.
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2010
, “
Multi-Objective Optimization Design Method for Tandem Compressor Cascade at Design and Off Design Conditions
,” ASME Paper No.GT2010-22655.
15.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021014
. 10.1115/1.2950065
16.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
. 10.1115/1.4038908
17.
Ju
,
Y. P.
,
Qin
,
R. H.
,
Kipouros
,
T.
,
Parks
,
G.
, and
Zhang
,
C. H.
,
2016
, “
A High-Dimensional Design Optimisation Method for Centrifugal Impellers
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
230
(
3
), pp.
272
288
. 10.1177/0957650915626274
18.
Ju
,
Y. P.
,
Zhang
,
C. H.
, and
Chi
,
X. L.
,
2012
, “
Optimization of Centrifugal Impellers for Uniform Discharge Flow and Wide Operating Range
,”
J. Propuls. Power
,
28
(
5
), pp.
888
899
. 10.2514/1.B34193
19.
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2014
, “
Design Optimization and Experimental Study of Tandem Impeller for Centrifugal Compressor
,”
J. Propuls. Power
,
30
(
6
), pp.
1490
1501
. 10.2514/1.B34933
20.
Guo
,
S.
,
Duan
,
F.
,
Tang
,
H.
,
Lim
,
C. S.
, and
Yip
,
M. S.
,
2014
, “
Multi-Objective Optimization for Centrifugal Compressor of Mini Turbojet Engine
,”
Aerosp. Sci. Technol.
,
39
, pp.
414
425
. 10.1016/j.ast.2014.04.014
21.
Kim
,
S.
,
Park
,
J.
,
Ahn
,
K.
, and
Baek
,
J.
,
2009
, “
Numerical Investigation and Validation of the Optimization of a Centrifugal Compressor Using a Response Surface Method
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
224
(
2
), pp.
251
259
. 10.1243/09576509JPE842
22.
Casey
,
M.
,
Gersbach
,
F.
, and
Robinson
,
C.
An Optimization Technique for Radial Compressor Impellers
,” ASME Paper No.GT2008-50561.
23.
Ju
,
Y. P.
,
Parks
,
G.
, and
Zhang
,
C. H.
,
2017
, “
A Bisection-Sampling-Based Support Vector Regression-High-Dimensional Model Representation Metamodeling Technique for High-Dimensional Problems
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
12
), pp.
2173
2186
. 10.1177/0954406216629504
24.
ANSYS
,
2013
,
ANSYS Manual, Version 17.0
,
ANSYS, Inc.
,
Canonsburg, PA
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
26.
Gibson
,
L.
,
Galloway
,
L.
,
Kim
,
S. i.
, and
Spence
,
S.
,
2017
, “
Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation
,”
J. Glob. Power Propuls. Soc.
,
1
, pp.
142
156
. 10.22261/2II890
27.
Liu
,
A.
,
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2018
, “
Parallel Simulation of Aerodynamic Instabilities in Transonic Axial Compressor Rotor
,”
J. Propuls. Power
,
34
(
6
), pp.
1561
1573
. 10.2514/1.B37038
28.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2019
, “
Stability Improvement of a Turbocharger Centrifugal Compressor by a Nonaxisymmetric Vaned Diffuser
,”
ASME J. Turbomach.
,
140
(
4
), p.
041007
. 10.1115/1.4038875
29.
Robinson
,
C.
,
Casey
,
M.
,
Hutchinson
,
B.
, and
Steed
,
R.
,
2016
, “
Impeller-Diffuser Interaction in Centrifugal Compressor
,” ASME Paper No.GT2012-69151.
30.
Sobol I
,
M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Model. Comput. Exp.
,
1
(
4
), pp.
407
414
.
31.
Rabitz
,
H.
, and
Aliş
,
ÖF
,
1999
, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2–3
), pp.
197
233
. 10.1023/A:1019188517934
32.
Hildebrandt
,
A.
, and
Ceyrowsky
,
T.
,
2019
, “
One-Dimensional and Three- Dimensional Design Strategies for Pressure Slope Optimization of High-Flow Transonic Centrifugal Compressor Impellers
,”
ASME J. Turbomach.
,
141
(
5
), p.
051002
. 10.1115/1.4041907
33.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping
,”
J. Fluids Eng.
,
103
(
2
), pp.
193
242
. 10.1115/1.3241725
34.
Eisenlohr
,
G.
,
Krain
,
H.
,
Richter
,
F.
, and
Tiede
,
V.
,
2002
, “
Investigations of the Flow Through a High Pressure Ratio Centrifugal Impeller
,” ASME Paper No. GT2002-30394.
35.
Japikse
,
D.
, and
Baines
,
N. C.
,
1998
,
Diffuser Design Technology, White River Junction
,
Concepts ETI, Inc
,
VT
.
36.
Krain
,
H.
, and
Hoffman
,
W.
,
1989
, “
Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations
,” ASME Paper No. GT1989-159.
37.
Dean
,
R.
, and
Senoo
,
Y.
,
1960
, “
Rotating Wakes in Vaneless Diffusers
,”
ASME J. Basic Eng.
,
82
(
3
), pp.
563
574
. 10.1115/1.3662659
38.
Eckardt
,
D.
,
1975
, “
Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller
,”
J. Eng. Power
,
97
(
3
), pp.
337
345
. 10.1115/1.3445999
39.
Stanitz
,
J. D.
, and
Prian
,
V. D.
,
1951
, “A Rapid Approximation Method for Determining Velocity Distribution on Impeller Blades of Centrifugal Compressors,” NACA TN 2421.
40.
Galloway
,
L.
,
Rusch
,
D.
,
Spence
,
S.
,
Vogel
,
K.
,
Hunziker
,
R.
, and
Kim
,
S. I.
,
2018
, “
An Investigation of Centrifugal Compressor Stability Enhancement Using a Novel Vaned Diffuser Recirculation Technique
,”
ASME J. Turbomach.
,
140
(
12
), p.
121009
. 10.1115/1.4041601
41.
Schleer
,
M.
, and
Abhari
,
R. S.
,
2008
, “
Clearance Effects on the Evolution of the Flow in the Vaneless Diffuser of a Centrifugal Compressor at Part Load Condition
,”
ASME J. Turbomach.
,
130
(
3
), p.
031009
. 10.1115/1.2776955
You do not currently have access to this content.