Abstract

Film cooling technology is widely used in gas turbines. With the additive manufacturing anticipated in the future, there will be more freedom in film cooling hole design. Exploiting this freedom, the present authors tried using curved holes to generate Dean vortices within the delivery line. These vortices have opposite direction of rotation to the vorticity of the kidney vortices and, thus, there is interaction between these vortices in the mixing region. It is shown that as a result of the inclusion of Dean vortices, the curved hole delivery leads to enhanced film cooling effectiveness. Numerical results, including film cooling effectiveness values, tracking of vortices in the flow field, heat transfer coefficients, and net heat flux reduction (NHFR), are compared between the curved hole, round hole, and a laidback, fan-shaped hole with blowing ratios, M, of 0.5, 1.0, 1.5, 2.0, and 2.5. The comparison shows that film cooling effectiveness values with the curved hole are higher than those with cylindrical film cooling holes at every blowing ratio studied. The curved hole has lower film cooling effectiveness values than the laidback, fan-shaped holes when M = 0.5 and 1.0, but shows advantages when the blowing ratio is higher than 1.0. There is heat transfer enhancement for the curved hole case due to a higher kinetic energy transferred to the near-wall region, however. Nevertheless, the curved hole still displays a higher NHFR when the blowing ratio is high.

References

1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
. 10.1115/1.1860562
2.
Fric
,
T. F.
,
1991
, “
Structure in the Near Field of the Transverse Jet
,”
Turbul. Shear Flows
,
1
(
2
), p.
6
.
3.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
. 10.1017/S0022112094003800
4.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
. 10.1115/1.2929422
5.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
. 10.1115/1.555433
6.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany
,
June 16–20
, p.
V05BT13A036
.
7.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The NEKOMIMI Cooling Technology: Cooling Holes With Ears for High-Efficient Film Cooling
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, Canada
,
June 6–10
, pp.
303
313
.
8.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Experimental Investigations of SYCEE Film Cooling Performance on a Plate and a Tested Vane of an F-Class Gas Turbine
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany
,
June 16–20
.
9.
Okita
,
Y.
, and
Nishiura
,
M.
,
2007
, “
Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry
,”
ASME J. Turbomach.
,
129
(
2
), pp.
331
339
. 10.1115/1.2437781
10.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Add. Manuf.
,
1
, pp.
64
76
. 10.1016/j.addma.2014.08.005
11.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
12.
Lewandowski
,
J. J.
, and
Seifi
,
M.
,
2016
, “
Metal Additive Manufacturing: A Review of Mechanical Properties
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
151
186
. 10.1146/annurev-matsci-070115-032024
13.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
14.
Min
,
Z.
,
Huang
,
G.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Experimental Investigation on Additively Manufactured Transpiration and Film Cooling Structures
,”
ASME J. Turbomach.
,
141
(
3
), p.
031009
. 10.1115/1.4042009
15.
Parbat
,
S. N.
,
Yang
,
L.
,
Min
,
Z.
, and
Chyu
,
M. K.
,
2019
, “
Experimental and Numerical Analysis of Additively Manufactured Coupons With Parallel Channels and Inline Wall Jets
,”
ASME J. Turbomach.
,
141
(
6
), p.
061004
. 10.1115/1.4041821
16.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
. 10.1115/1.4034342
17.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Numerical Optimization, Characterization, and Experimental Investigation of Additively Manufactured Communicating Microchannels
,”
ASME J. Turbomach.
,
140
(
11
), p.
111003
. 10.1115/1.4041494
18.
Papell
,
S. S.
,
Graham
,
R. W.
, and
Cageao
,
R. P.
,
1979
, “
Influence of Coolant Tube Curvature on Film Cooling Effectiveness as Detected by Infrared Imagery
,”
NASA Technical Paper 1546
.
19.
Papell
,
S. S.
,
Wang
,
C.-R.
, and
Graham
,
R. W.
,
1982
, “
Film-Cooling Effectiveness With Developing Coolant Flow Through Straight and Curved Tubular Passages
,”
NASA Technical Paper 2062
.
20.
Liang
,
J. Y.
, and
Kang
,
S.
,
2013
, “
Experimental and Numerical Investigation of Cooling Effectiveness and Heat Transfer Coefficient for Straight and Curved Holes
,”
Int. J. Heat Mass Transf.
,
56
(
1–2
), pp.
158
171
. 10.1016/j.ijheatmasstransfer.2012.09.041
21.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Application of Algebraic Anisotropic Turbulence Models to Film Cooling Flows
,”
Int. J. Heat Mass Transf.
,
91
, pp.
7
17
. 10.1016/j.ijheatmasstransfer.2015.07.098
22.
Shyam
,
V.
,
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Eichele
,
P.
, and
Knight
,
J.
,
2013
, “
Long Hole Film Cooling Dataset for CFD Development. Part 1; Infrared Thermography and Thermocouple Surveys
,”
NASA Report No. TM-2013-218086
.
23.
Springer
,
F.
,
Carretier
,
E.
,
Veyret
,
D.
, and
Moulin
,
P.
,
2009
, “
Developing Lengths in Woven and Helical Tubes With Dean Vortices Flows
,”
Eng. Appl. Comput. Fluid Mech.
,
3
(
1
), pp.
123
134
. 10.1080/19942060.2009.11015259
24.
Habchi
,
C.
,
Khaled
,
M.
,
Lemenand
,
T.
,
Della Valle
,
D.
,
Elmarakbi
,
A.
, and
Peerhossaini
,
H.
,
2014
, “
A Semi-Analytical Approach for Temperature Distribution in Dean Flow
,”
ASME Heat Mass Transfer
,
50
(
1
), pp.
23
30
. 10.1007/s00231-013-1222-z
25.
ANSYS, Inc.
,
ANSYS CFX-Solver Theory Guide, Release 18.2
,
2017
.
26.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Aerodynamic Comparison and Validation of RANS, URANS and SAS Simulations of Flat Plate Film-Cooling
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
1471
1480
.
27.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
. 10.1115/1.2840937
28.
Schulz
,
U.
,
Leyens
,
C.
,
Fritscher
,
K.
,
Peters
,
M.
,
Saruhan-Brings
,
B.
,
Lavigne
,
O.
,
Dorvaux
,
J.-M.
,
Poulain
,
M.
,
Mévrel
,
R.
, and
Caliez
,
M.
,
2003
, “
Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings
,”
Aerosp. Sci. Technol.
,
7
(
1
), pp.
73
80
. 10.1016/S1270-9638(02)00003-2
You do not currently have access to this content.