In this paper the aerodynamics of an innovative multisplitter low pressure (LP) stator downstream of a high pressure turbine stage is presented. The stator row, located inside a swan necked diffuser, is composed of 16 large structural vanes and 48 small airfoils. The experimental characterization of the steady and unsteady flow fields was carried out in a compression tube rig under engine representative conditions. The one-and-a-half turbine stage was tested at three operating regimes by varying the pressure ratio and the rotational speed. Time-averaged and time-accurate surface pressure measurements are used to investigate the aerodynamic performance of the stator and the complex interaction mechanisms with the high pressure (HP) turbine stage. Results show that the strut blade has a strong impact on the steady and unsteady flow fields of the small vanes depending on the vane circumferential position. The time-mean pressure distributions around the airfoils show that the strut influence is significant only in the leading edge region. At off-design condition (higher rotor speed) a wide separated region is present on the strut pressure side and it affects the flow field of the adjacent vanes. A complex behavior of the unsteady surface pressures was observed. Up to four pressure peaks are identified in the time-periodic signals. The frequency analysis also shows a complex structure. The spectrum distribution depends on the vane position. The contribution of the harmonics is often larger than the fundamental frequency. The forces acting on the LP stator vanes are calculated. The results show that higher forces act on the small vanes but largest fluctuations are experienced by the strut. The load on the whole stator decreases 30% as the turbine pressure ratio is reduced by approximately 35%.

1.
De la Calzada
,
P.
, 2008, “
Aerothermodynamic Design of Low Pressure Turbines
,”
Aero-Engine Design: From State of the Art Turbofans Towards Innovative Architectures
,
R.
Dénos
and
G.
Paniagua
, eds.,
von Karman Institute for Fluid Dynamics
,
Rhode-Saint-Genèse, Belgium
.
2.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
, 1998, “
Flow Development Through Inter-Turbine Diffusers
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
298
304
.
3.
Giles
,
M. B.
, 1990, “
Stator/Rotor Interaction in a Transonic Turbine
,”
J. Propul. Power
0748-4658,
6
(
5
), pp.
621
627
.
4.
Hilditch
,
M. A.
,
Smith
,
G. C.
, and
Singh
,
U. K.
, 1998, “
Unsteady Flow in a Single Stage Turbine
,”
ASME
Paper No. 98-GT-531.
5.
Dénos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
, 2001, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
123
(
1
), pp.
81
89
.
6.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Horwood
,
C. K.
, 2003, “
Time-Resolved Vane-Rotor Interaction in a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
1
13
.
7.
Paniagua
,
G.
,
Yasa
,
T.
,
de la Loma
,
A.
,
Castillon
,
L.
, and
Coton
,
T.
, 2008, “
Unsteady Strong Shocks Interactions in a Transonic Turbine: Experimental and Numerical Analysis
,”
J. Propul. Power
0748-4658,
24
(
4
), pp.
722
731
.
8.
Billiard
,
N.
,
Paniagua
,
G.
, and
Dénos
,
R.
, 2008, “
Impact of Clocking on the Aero-Thermodynamics of a Second Stator Tested in a One and a Half Stage HP Turbine
,”
J. Therm. Sci.
1003-2169,
17
(
2
), pp.
97
110
.
9.
Reinmöller
,
U.
,
Stephan
,
B.
,
Schmidt
,
S.
, and
Niehuis
,
R.
, 2002, “
Clocking Effects in a 1.5 Stage Axial Turbine—Steady and Unsteady Experimental Investigations Supported by Numerical Simulations
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
52
60
.
10.
Bohn
,
D.
,
Ren
,
J.
, and
Sell
,
M.
, 2005, “
Influence of Stator Clocking on the Unsteady Three-Dimensional Flow in a Two-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
127
(
1
), pp.
156
163
.
11.
Davis
,
R. L.
,
Yao
,
J.
,
Clark
,
J. P.
,
Stetson
,
G.
,
Alonso
,
J. J.
,
Jameson
,
A.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2004, “
Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components
,”
Int. J. Rotating Mach.
1023-621X,
10
(
6
), pp.
495
506
.
12.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2003, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part I: Vane-Rotor and Rotor-Vane Interaction
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
33
39
.
13.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2003, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part II: Vane-Vane Interaction and Discussion of Results
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
40
47
.
14.
Haldeman
,
C. W.
,
Krumanaker
,
M. L.
, and
Dunn
,
M. G.
, 2003, “
Influence of Clocking and Vane/Blade Spacing on the Unsteady Surface Pressure Loading for a Modern Stage and One-Half Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
743
753
.
15.
Zhou
,
D. M.
,
Zhang
,
Z. G.
, and
Li
,
Y. S.
, 1993, “
Numerical Prediction of Profile and Endwall Losses for Multi-Splitter Turbine Cascades
,”
ASME
Paper No. 93-GT-255.
16.
Zhou
,
D. M.
,
Zhang
,
Z. G.
, and
Li
,
Y. S.
, 1993, “
Design and Calculation for Splittered Axial Turbine Cascade
,”
ASME
Paper No. 93-GT-311.
17.
Barber
,
T. J.
, and
Weingold
,
H. D.
, 1978, “
Vibratory Forcing Functions Produced by Nonuniform Cascades
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
82
88
.
18.
Ng
,
W. F.
,
O’Brien
,
W. F.
, and
Olsen
,
T. L.
, 1987, “
Experimental Investigation of Unsteady Fan Flow Interaction With Downstream Struts
,”
J. Propul. Power
0748-4658,
3
(
2
), pp.
157
163
.
19.
Kodama
,
H.
, and
Nagano
,
S.
, 1989, “
Potential Pressure Field by Stator/Strut Interaction
,”
ASME J. Turbomach.
0889-504X,
111
(
2
), pp.
197
203
.
20.
Cerri
,
G.
, and
O’Brien
,
W. F.
, 1989, “
Sensitivity Analysis and Optimum Design Method for Reduced Rotor-Stator-Strut Flow Interaction
,”
ASME J. Turbomach.
0889-504X,
111
(
4
), pp.
401
408
.
21.
Cerri
,
G.
,
Boatto
,
C.
,
O’Brien
,
W. F.
, and
Sorrenti
,
A.
1994, “
Optimization of Rotor-Stator-Strut Potential Flow Interaction Including Rotor Feedback Effects
,”
ASME
Paper No. 94-GT-274.
22.
Parry
,
A. B.
, and
Bailey
,
R. H.
, 1997, “
The Use of Cyclic Variations in Strut Stagger to Reduce Coupled Blade-Vane-Strut-Pylon Interaction and System Losses
,”
ASME
Paper No. 97-GT-470.
23.
Ro
,
M. S.
, and
Hong
,
Y. S.
, 1995, “
The Control of Secondary Flow by Application of Splitter Vanes in the Turbine Stator Passages
,”
Proceedings of the Yokohama International Gas Turbine Congress
, Yokohama, Japan, Vol.
2
, pp.
81
84
.
24.
Sieverding
,
C. H.
, and
Arts
,
T.
, 1992, “
The VKI Compression Tube Annular Cascade Facility
,”
ASME
Paper No. 92-GT-336.
25.
Cambier
,
L.
, and
Gazaix
,
M.
, 2002, “
elsA: An Efficient Object-Oriented Solution to CFD Complexity
,”
Proceedings of the 40th AIAA Aerospace Science Meeting and Exhibit
, Reno, NV.
26.
Cambier
,
L.
, and
Veuillot
,
J. P.
, 2008, “
Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications
,”
Proceedings of the 46th AIAA Aerospace Science Meeting and Exhibit
, Reno, NV.
27.
Fourmaux
,
A.
, 1994, “
Assessment of a Low Storage Technique for Multi-Stage Turbomachinery Navier-Stokes Computations
,”
ASME Winter Annual Meeting
, Chicago, IL.
28.
Gadea
,
J.
,
Dénos
,
R.
,
Paniagua
,
G.
, and
Sieverding
,
C. H.
, 2004, “
Effect of Clocking on the Second Stator Pressure Field of a One and a Half Stage Transonic Turbine
,”
ASME
Paper No. GT2004-53463.
29.
Valenti
,
E.
,
Halama
,
J.
,
Dénos
,
R.
, and
Arts
,
T.
, 2002, “
Investigation of the 3D Unsteady Rotor Pressure Field in a HP Turbine Stage
,”
ASME
Paper No. GT2002-30365.
30.
Dénos
,
R.
, and
Paniagua
,
G.
, 2005, “
Effect of Vane-Rotor Interaction on the Unsteady Flow Field Downstream of a Transonic HP Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
6
), pp.
431
442
.
31.
Tiedemann
,
M.
, and
Kost
,
F.
, 2001, “
Some Aspects of Wake-Wake Interactions Regarding Turbine Stator Clocking
,”
ASME J. Turbomach.
0889-504X,
123
(
3
), pp.
526
533
.
32.
Hummel
,
F.
, 2002, “
Wake-Wake Interaction and Its Potential for Clocking in a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
69
76
.
33.
Li
,
H. D.
, and
He
,
L.
, 2003, “
Blade Count and Clocking Effects on Three-Blade-Row Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
632
640
.
34.
Dorney
,
D. J.
, and
Sharma
,
O. P.
, 1998, “
Turbine Performance Increases Through Airfoil Clocking
,”
Int. J. Turbo Jet Engines
0334-0082,
15
, pp.
119
127
.
35.
Arnone
,
A.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Schipani
,
C.
, and
Spano
,
E.
, 2002, “
Numerical Investigation of Airfoil Clocking in a Three-Stage Low-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
61
68
.
36.
Schennach
,
O.
,
Woisetschläger
,
J.
,
Fuchs
,
A.
,
Göttlich
,
E.
,
Marn
,
A.
, and
Pecnik
,
R.
, 2007, “
Experimental Investigation of Clocking in a One-and-a-Half Stage Transonic Turbine Using Laser Doppler Velocimetry and a Fast Response Aerodynamic Pressure Probe
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
372
381
.
You do not currently have access to this content.