This paper is the first part of a two part paper reporting the improvement of efficiency of a one-and-half stage high work axial flow turbine by nonaxisymmetric endwall contouring. In this first paper the design of the endwall contours is described, and the computational fluid dynamics (CFD) flow predictions are compared with five-hole-probe measurements. The endwalls have been designed using automatic numerical optimization by means of a sequential quadratic programming algorithm, the flow being computed with the 3D Reynolds averaged Navier-Stokes (RANS) solver TRACE. The aim of the design was to reduce the secondary kinetic energy and secondary losses. The experimental results confirm the improvement of turbine efficiency, showing a stage efficiency benefit of 1%±0.4%, revealing that the improvement is underestimated by CFD. The secondary flow and loss have been significantly reduced in the vane, but improvement of the midspan flow is also observed. Mainly this loss reduction in the first row and the more homogeneous flow is responsible for the overall improvement. Numerical investigations indicate that the transition modeling on the airfoil strongly influences the secondary loss predictions. The results confirm that nonaxisymmetric endwall profiling is an effective method to improve turbine efficiency but that further modeling work is needed to achieve a good predictability.

1.
Sieverding
C. H.
, 1984, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flow in Turbine Blade Passages
,” ASME Paper No. 84-GT-78.
2.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
11
26
.
3.
Hawthorne
,
W. R.
, 1955, “
Rotational Flow Through Cascades—Part 1. The Components of Vorticity
,”
Q. J. Mech. Appl. Math.
,
8
, pp.
266
279
. 0077-8923
4.
Pullan
,
G.
,
Denton
,
J.
, and
Dunkley
,
M.
, 2002, “
An Experimental and Computational Study of the Formation of a Streamwise Shed Vortex in a Turbine Stage
,” ASME Paper No. GT-2002-30331.
5.
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2005, “
Vortex-Wake-Blade Interaction in a Shrouded Axial Turbine
,”
ASME J. Turbomach.
0889-504X,
127
(
4
), pp.
699
707
.
6.
Gier
,
J.
,
Ardey
,
S.
,
Eymann
,
S.
,
Reinmöller
,
U.
, and
Niehuis
,
R.
, 2002, “
Improving 3D Flow Characteristics in a Multistage LP Turbine by Means of Endwall Contouring and Airfoil Design Modification—Part 2: Numerical Simulation and Analysis
,” ASME Paper No. GT-2002-30353.
7.
Dejc
,
M. E.
, and
Zarjankin
,
A. E.
, 1960, “
Methods of Increasing the Efficiency of Turbine Stages
,”
Teploenergetika (Moscow, Russ. Fed.)
0040-3636,
2
, pp.
18
24
.
8.
Harrison
,
S.
, 1992, “
The Influence of Blade Lean on Turbine Losses
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
184
190
.
9.
Kawagishi
,
H.
, and
Kawasaki
,
S.
, 1991, “
The Effect of Nozzle Lean on Turbine Efficiency
,” ASME Paper No. H00652.
10.
Eymann
,
S.
,
Reinmöller
,
U.
,
Niehuis
,
R.
,
Förster
,
W.
,
Bewersdorf
,
M.
, and
Gier
,
J.
, 2002, “
Improving 3D Flow Characteristics in a Multistage LP Turbine by Means of Endwall Contouring and Airfoil Design Modification—Part 1: Design and Experimental Investigation
,” ASME Paper No. GT-2002-30352.
11.
Sauer
,
H.
, and
Wolf
,
H.
, 1997, “
Influencing the Secondary Flow in Turbine Cascades by the Modification of the Blade Leading Edge
,”
Second European Conference on Turbomachinery
, Antwerp.
12.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
, 2004, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,” ASME Paper No. GT2004-53964.
13.
Rose
,
M. G.
, 1994, “
Non-Axisymmetric Endwall Profiling in the HP NGV’s of an Axial Flow Gas Turbine
,” ASME Paper No. 249-GT-94.
14.
Hartland
,
J.
,
Gregory-Smith
,
D.
,
Harvey
,
N.
, and
Rose
,
M.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
286
293
.
15.
Gregory-Smith
,
D.
,
Ingram
,
G.
,
Jayaraman
,
P.
,
Harvey
,
N.
, and
Rose
,
M.
, 2001, “
Non-Axisymmetric Turbine End Wall Profiling
,”
Proceedings of the Fourth European Conference on Turbo-Machinery
.
16.
Brennan
,
G.
,
Harvey
,
N.
,
Rose
,
M.
,
Fomison
,
N.
, and
Taylor
,
M.
, 2003, “
Improving the Efficiency of the Trent 500-HP Turbine Using Nonaxisymmetric End Walls—Part 1: Turbine Design
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
497
504
.
17.
Rose
,
M.
,
Harvey
,
N.
,
Seaman
,
P.
,
Newman
,
D.
, and
McManus
,
D.
, 2001, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls. Part II: Experimental Validation
,” ASME Paper No. 2001-GT-0505.
18.
Nagel
,
M.
,
Fottner
,
L.
, and
Baier
,
R. -D.
, 2001, “
Optimization of Three Dimensionally Designed Turbines Blades and Side Walls
,” ISABE Paper No. 2001-1058.
19.
Ingram
,
D.
,
Rose
,
M.
, and
Harvey
,
N.
, 2002, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,” ASME Paper No. GT-2002-30339.
20.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT2007-27579.
21.
Germain
,
T.
,
Nagel
,
M.
, and
Baier
,
R. -D.
, 2007, “
Visualisation and Quantification of Secondary Flows: Application to Turbine Bladings With 3D-Endwalls
,”
Proceedings of the Eighth ISAIF
, Lyon.
22.
Sell
,
M.
,
Schlienger
,
J.
,
Pfau
,
A.
,
Treiber
,
M.
, and
Abhari
,
R. S.
, 2001, “
The 2-Stage Axial Turbine Test Facility LISA
,” ASME Paper No. 2001-GT-0492.
23.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Unsteady Flow Physics and Performance of0020a One-and-1/2-Stage Unshrouded High Work Turbine
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
348
359
.
24.
Weber
,
A.
, 2004, “
3D Structured Grids for Multistage Turbomachinery Applications Based on G3DMESH, 1st revision ed.
,” Institute of Propulsion Technology, German Aerospace Centre, DLR No. IB-325-05-04.
25.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effect of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
(
5
), pp.
213
228
.
26.
Gier
,
J.
,
Engel
,
K.
,
Stubert
,
B.
, and
Wittmaack
,
R.
, 2006, “
Modeling and Analysis of Main Flow—Shroud Leakage Flow Interaction in LP Turbines
,” ASME Paper No. GT2006-90773.
27.
Spellucci
,
P.
, 1995, DONLP2, User’s Guide, Technical University Darmstadt, FB4, AG8.
28.
Vera
,
M.
,
de la Rosa Blanco
,
E.
,
Hodson
,
H.
, and
Vazquez
,
R.
, 2007, “
Endwall Boundary Layer Development in an Engine Representative Four-Stage Low Pressure Turbine Rig
,” ASME Paper No. GT-2007-27842.
29.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2010, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part II: Time-Resolved Flow Physics
,”
ASME J. Turbomach.
0889-504X,
132
, p.
021008
.
You do not currently have access to this content.