The film-cooling effectiveness on the surface of a high pressure turbine blade is measured using the pressure sensitive paint technique. Compound angle laidback fan-shaped holes are used to cool the blade surface with four rows on the pressure side and two rows on the suction side. The coolant injects to one side of the blade, either pressure side or suction side. The presence of wake due to the upstream vanes is simulated by placing a periodic set of rods upstream of the test blade. The wake rods can be clocked by changing their stationary positions to simulate progressing wakes. The effect of wakes is recorded at four phase locations along the pitchwise direction. The freestream Reynolds number, based on the axial chord length and the exit velocity, is 750,000. The inlet and exit Mach numbers are 0.27 and 0.44, respectively, resulting in a pressure ratio of 1.14. Five average blowing ratios ranging from 0.4 to 1.5 are tested. Results reveal that the tip-leakage vortices and endwall vortices sweep the coolant on the suction side to the midspan region. The compound angle laidback fan-shaped holes produce a good film coverage on the suction side except for the regions affected by the secondary vortices. Due to the concave surface, the coolant trace is short and the effectiveness level is low on the pressure surface. However, the pressure side acquires a relatively uniform film coverage with the multiple rows of cooling holes. The film-cooling effectiveness increases with the increasing average blowing ratio for either side of coolant ejection. The presence of stationary upstream wake results in lower film-cooling effectiveness on the blade surface. The compound angle shaped holes outperform the compound angle cylindrical holes by the elevated film-cooling effectiveness, particularly at higher blowing ratios.

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
2.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1996, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,” ASME Paper No. 96-GT-174.
3.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1997, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,” ASME Paper No. 97-GT-164.
4.
Yu
,
Y.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 1999, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,” ASME Paper No. 99-GT-34.
5.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1994, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,” ASME Paper No. 94-GT-312.
6.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Assessment of Various Film Cooling Configurations Including Shaped and Compound Angle Holes Based on Large Scale Experiments
,” ASME Paper No. GT-2002-30176.
7.
Chen
,
P. H.
,
Hung
,
M. S.
, and
Ding
,
P. P.
, 2001, “
Film Cooling Performance on Curved Walls With Compound Angle Hole Configuration
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
353
360
.
8.
Teng
,
S.
, and
Han
,
J. C.
, 2001, “
Effect of Film-Hole Shape on Turbine-Blade Film-Cooling Performance
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
257
265
.
9.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J. C.
, 2006, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,” AIAA Paper No. AIAA-2006-3404.
10.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J. C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
340
347
.
11.
Ou
,
S.
,
Han
,
J. C.
,
Mehendale
,
A. G.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
721
729
.
12.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
730
737
.
13.
Du
,
H.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1999, “
Effect of Unsteady Wake With Trailing Edge Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
448
455
.
14.
Rigby
,
M. J.
,
Johnson
,
A. B.
, and
Oldfield
,
M. L. G.
, 1990, “
Gas Turbine Rotor Blade Film Cooling With and Without Simulated NGV Shock Waves and Wakes
,” ASME Paper No. 90-GT-78.
15.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
214
221
.
16.
Mhetras
,
S.
, and
Han
,
J. C.
, 2006, “
Effect of Unsteady Wake on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,” AIAA Paper No. AIAA-2006-3404.
17.
Mhetras
,
S.
, and
Han
,
J. C.
, 2006, “
Effect of Superposition on Spanwise Film-Cooling Effectiveness Distribution on a Gas Turbine Blade
,” ASME Paper No. IMECE 2006-18084.
18.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2001,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
, New York.
19.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT-2005-72363.
20.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
, New York, Chaps. 3 and 4.
21.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1997, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,” ASME Paper No. 97-GT-165.
22.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
23.
Wang
,
H.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
.”
ASME J. Turbomach.
0889-504X,
119
, pp.
36
42
.
You do not currently have access to this content.