To enable turbine components to withstand high combustion temperatures, they are cooled by air routed from the compressor, which can leak through gaps between components. These gaps vary in size from thermal expansions that take place. The leakage flow between the interface of the combustor and the turbine, in particular, interacts with the flowfield along the endwall. This study presents measurements of adiabatic cooling effectiveness and heat transfer coefficients on the endwall of a first vane, with the presence of leakage flow through a flush slot upstream of the vane. The effect of axial contraction of the slot width due to thermal expansion of the engine was tested for two blowing rates. Contracting the slot width, while maintaining the slot mass flow, resulted in a larger coolant coverage area and higher effectiveness values, as well as slightly lower heat transfer coefficients. Matching the momentum flux ratio of the leakage flow from the nominal and contracted slot widths lowered both cooling effectiveness and heat transfer coefficients for the contracted slot flow. Comparison of the coolant coverage pattern to the measured endwall shear stress topology indicated that the trajectory of the slot coolant was dictated by the complex endwall flow.

1.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
229
236
.
3.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
4.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
5.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
568
.
6.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
, 2003, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
210
220
.
7.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
8.
Granser
,
D.
, and
Schulenberg
,
T.
, 1990, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,” ASME Paper No. 90-GT-95.
9.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT2004-53326.
10.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2005, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
297
305
.
11.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
, 2000, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,” ASME Paper No. 2000-GT-200.
12.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2007, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
756
764
.
13.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part I: Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
709
719
.
14.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part II: Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
729
.
15.
Kost
,
F.
, and
Mullaert
,
A.
, 2006, “
Migration of Film-Coolant From Slot and Hole Ejection at a Turbine Vane Endwall
,” ASME Paper No. GT2006-90355.
16.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 2002,
Fundamentals of Fluid Mechanics
, 4th ed.,
Wiley
,
New York
, p.
514
.
17.
Naughton
,
J. W.
, and
Sheplak
,
M.
, 2002, “
Modern Developments in Shear Stress Measurement
,”
Prog. Aerosp. Sci.
0376-0421,
38
, pp.
515
570
.
18.
Harrison
,
S.
, 1990, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
618
624
.
19.
Holley
,
B.
, and
Langston
,
L. S.
, “
Surface Shear Stress and Pressure Measurements in a Turbine Cascade
,” ASME Paper No. GT2006-90580.
20.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
21.
FLUENT, Version 6.2.1, Fluent Inc., Lebanon, NH.
22.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
You do not currently have access to this content.