Pulsed film cooling jets subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35deg to the surface were considered at blowing ratios B of 0.50 and 1.0 with jet pulsing and wake Strouhal numbers of 0.15, 0.30, and 0.60. Wake timing was varied with respect to the pulsing. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold wire) anemometry. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold-wire surveys. With B=0.5, wakes and pulsing both lead to a reduction in film cooling effectiveness, and the reduction is larger when wakes and pulsing are combined. With B=1.0, pulsing again causes a reduction in effectiveness, but wakes tend to counteract this effect somewhat by reducing jet lift-off. At low Strouhal numbers, wake timing had a significant effect on the instantaneous film cooling effectiveness, but wakes in general had very little effect on the time averaged effectiveness. At high Strouhal numbers, the wake effect was stronger, but the wake timing was less important. Wakes increased the heat transfer coefficient strongly and similarly in cases with and without film cooling, regardless of wake timing. Heat transfer coefficient ratios, similar to the time averaged film cooling effectiveness, did not depend strongly on wake timing for the cases considered.

1.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
, 2006, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
564
571
.
2.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
, 1997, “
Effect of Periodic Wake Passing on Film Cooling Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
292
301
.
3.
Funazaki
,
K.
,
Koyabu
,
E.
, and
Yamawaki
,
S.
, 1998, “
Effect of Periodic Wake Passing on Film Cooling Effectiveness of Inclined Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
70
78
.
4.
Ou
,
S.
,
Han
,
J. C.
,
Mehendale
,
A. B.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
721
729
.
5.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
730
737
.
6.
Jiang
,
H. W.
, and
Han
,
J. C.
, 1996, “
Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
327
333
.
7.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1997, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficients of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
594
600
.
8.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
, 1998, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficients and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
808
817
.
9.
Du
,
H.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1999, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
448
455
.
10.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J. C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
340
347
.
11.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
, 2001, “
Effect of Film-Hole Shape on Turbine-Blade Heat-Transfer Coefficient Distribution
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
249
256
.
12.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
, 2001, “
Effect of Film-Hole Shape on Turbine-Blade Film-Cooling Performance
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
257
265
.
13.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
214
221
.
14.
Wolff
,
S.
,
Fottner
,
L.
, and
Ardey
,
S.
, 2002, “
An Experimental Investigation on the Influence of Periodic Unsteady Inflow Conditions on Leading Edge Film Cooling
,” ASME Paper No. GT-2002-30202.
15.
Adami
,
P.
,
Belardini
,
E.
,
Montomoli
,
F.
, and
Martelli
,
F.
, 2004, “
Interaction Between Wake and Film Cooling Jets: Numerical Analysis
,” ASME Paper No. GT2004-53178.
16.
Deinert
,
M.
, and
Hourmouziadis
,
J.
, 2004, “
Film Cooling in Unsteady Flow With Separation Bubble
,” ASME Paper No. GT2004-53075.
17.
Womack
,
K. M.
,
Volino
,
R. J.
, and
Schultz
,
M. P.
, 2007, “
Measurements in Film Cooling Flows With Periodic Wakes
,”
ASME J. Turbomach.
0889-504X, to be published.
18.
Bons
,
J. P.
,
Rivir
,
R. B.
,
MacArthur
,
C. D.
, and
Pestian
,
D. J.
, 1996, “
The Effect of Unsteadiness on Film Cooling Effectiveness
,” Wright Laboratory Technical Report No. WLTR-96-2096.
19.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
, 1996, “
Bulk Flow Pulsations and Film Cooling—I, Injectant Behavior, II. Flow Structure and Film Effectiveness
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2271
2292
.
20.
Seo
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
, 1999, “
Effects of Bulk Flow Pulsations on Film Cooling From Different Length Injection Holes at Different Blowing Ratios
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
542
550
.
21.
Jung
,
I. S.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
, 2002, “
Effects of Bulk Flow Pulsations on Film Cooling With Compound Angle Holes: Heat Transfer Coefficient Ratio and Heat Flux Ratio
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
142
151
.
22.
Ou
,
S.
, and
Rivir
,
R. B.
, 2006, “
Shaped-Hole Film Cooling With Pulsed Secondary Flow
,” ASME Paper No. GT2006-90272.
23.
Nikitopoulos
,
D. E.
,
Acharya
,
S.
,
Oertling
,
J.
, and
Muldoon
,
F. H.
, 2006, “
On Active Control of Film-Cooling Flows
,” ASME Paper No. GT2006-90051.
24.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2007, “
Effect of Jet Pulsing on Film Cooling—Part 1: Effectiveness and Flowfield Temperature Results
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
232
246
.
25.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2007, “
Effect of Jet Pulsing on Film Cooling—Part 2: Heat Transfer Results
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
247
257
.
26.
Burd
,
S.
, and
Simon
,
T. W.
, 2000, “
Effects of Hole Length, Supply Plenum Geometry, and Freestream Turbulence on Film Cooling Performance
,” NASA Report No. CR-2000-210336.
27.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstien
,
R. J.
, 1977, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
620
627
.
28.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1998, “
Fluctuating Thermal Field in the Near-Hole Region for Film Cooling Flows
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
86
91
.
29.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2006, “
Effect of Unheated Starting Lengths on Film Cooling Experiments
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
579
588
.
You do not currently have access to this content.