Film cooling flows subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35deg to the surface were considered at blowing ratios of 0.25, 0.50, and 1.0 with a steady freestream and with wake Strouhal numbers of 0.15, 0.30, and 0.60. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold-wire) anemometry. Hot-wire anemometry was used for velocity measurements. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold-wire surveys. Wakes decreased the film cooling effectiveness for blowing ratios of 0.25 and 0.50 when compared to steady freestream cases. In contrast, effectiveness increased with Strouhal number for the 1.0 blowing ratio cases, as the wakes helped mitigate the effects of jet lift-off. Heat transfer coefficients increased with wake passing frequency, with nearly the same percentage increase in cases with and without film cooling. The time resolved flow measurements show the interaction of the wakes with the film cooling jets. Near-wall flow measurements are used to infer the instantaneous film cooling effectiveness as it changes during the wake passing cycle.

1.
Varadarajan
,
K.
, and
Bodard
,
D. G.
, 2004, “
Effects of Hot Streaks on Adiabatic Effectiveness for a Film Cooled Turbine Vane
,” ASME Paper No. GT2004–54016.
2.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
, 1994, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
814
825
.
3.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1998, “
Effects of Very High Free-Stream Turbulence on the Jet—Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
785
790
.
4.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1997, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficients of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
594
600
.
5.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
, 1998, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
791
798
.
6.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
, 1997, “
Effect of Periodic Wake Passing on Film Cooling Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
292
301
.
7.
Funazaki
,
K.
,
Koyabu
,
E.
, and
Yamawaki
,
S.
, 1998, “
Effect of Periodic Wake Passing on Film Cooling Effectiveness of Inclined Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
70
78
.
8.
Ou
,
S.
,
Han
,
J. C.
,
Mehendale
,
A. B.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
721
729
.
9.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
730
737
.
10.
Jiang
,
H. W.
, and
Han
,
J. C.
, 1996, “
Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
327
333
.
11.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
, 1998, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficients and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
808
817
.
12.
Du
,
H.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1999, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
448
455
.
13.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J. C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
340
347
.
14.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
, 2001, “
Effect of Film-Hole Shape on Turbine-Blade Heat-Transfer Coefficient Distribution
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
249
256
.
15.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
, 2001, “
Effect of Film-Hole Shape on Turbine-Blade Film-Cooling Performance
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
257
265
.
16.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
214
221
.
17.
Wolff
,
S.
,
Fottner
,
L.
, and
Ardey
,
S.
, 2002, “
An Experimental Investigation on the Influence of Periodic Unsteady Inflow Conditions on Leading Edge Film Cooling
,” ASME Paper No. GT-2002–30202.
18.
Adami
,
P.
,
Belardini
,
E.
,
Montomoli
,
F.
, and
Martelli
,
F.
, 2004, “
Interaction Between Wake and Film Cooling Jets: Numerical Analysis
,” ASME Paper No. GT2004–53178.
19.
Burd
,
S.
, and
Simon
,
T. W.
, 2000, “
Effects of Hole Length, Supply Plenum Geometry, and Freestream Turbulence on Film Cooling Performance
,” NASA, Report No. CR-2000–210336.
20.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Effects of Surface Roughness on Film Cooling
,” ASME Paper No. 96-GT-299.
21.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstien
,
R. J.
, 1977, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
620
627
.
22.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1998, “
Fluctuating Thermal Field in the Near-Hole Region for Film Cooling Flows
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
86
91
.
23.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1991, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Ratio
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
442
449
.
24.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1990, “
Effect of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
437
443
.
25.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2006, “
Effect of Unheated Starting Lengths on Film Cooling Experiments
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
579
588
.
26.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2007, “
Effect of Jet Pulsing on Film Cooling, Part 1: Effectiveness and Flowfield Temperature Results
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
232
246
.
27.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2007, “
Effect of Jet Pulsing on Film Cooling, Part 2: Heat Transfer Results
,”
ASME J. Turbomach.
0889-504X
129
, pp.
247
257
.
28.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
You do not currently have access to this content.