The paper experimentally studies the effects of periodic unsteady wake flow and Reynolds number on boundary layer development, separation, reattachment, and the intermittency behavior along the suction surface of a low pressure turbine blade. Extensive unsteady boundary layer experiments were carried out at Reynolds numbers of 110,000 and 150,000 based on suction surface length and exit velocity. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The analysis of the experimental data reveals details of boundary layer separation dynamics which is essential for understanding the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds numbers. To provide a complete picture of the transition process and separation dynamics, extensive intermittency analysis was conducted. Ensemble-averaged maximum and minimum intermittency functions were determined, leading to the relative intermittency function. In addition, the detailed intermittency analysis was aimed at answering the question as to whether the relative intermittency of a separated flow fulfills the universality criterion.

1.
Pfeil
,
H.
, and
Herbst
,
R.
, 1979, “
Transition Procedure of Instationary Boundary Layers
,” ASME Paper No. 79-GT-128.
2.
Pfeil
,
H.
,
Herbst
,
R.
, and
Schröder
,
T.
, 1983, “
Investigation of the Laminar Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
130
137
.
3.
Orth
,
U.
, 1992, “
Unsteady Boundary-Layer Transition in Flow Periodically Disturbed by Wakes
,” ASME Paper No. 92-GT-283.
4.
Schobeiri
,
M. T.
, and
Radke
,
R. E.
, 1994, “
Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate
,” ASME Paper No. 94-GT-327.
5.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
, 2003, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
251
266
.
6.
Wright
,
L.
, and
Schobeiri
,
M. T.
, 1999, “
The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
22
33
.
7.
Chakka
,
P.
, and
Schobeiri
,
M. T.
, 1999, “
Modeling of Unsteady Boundary Layer Transition on a Curved Plate under Periodic Unsteady Flow Condition: Aerodynamic and Heat Transfer Investigations
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
88
97
.
8.
Liu
,
X.
, and
Rodi
,
W.
, 1991, “
Experiments on Transitional Boundary Layers with Wake-Induced Unsteadiness
,”
J. Fluid Mech.
0022-1120,
231
, pp.
229
256
.
9.
Schobeiri
,
M. T.
,
Pappu
,
K.
, and
Wright
,
L.
, 1995, “
Experimental Study of the Unsteady Boundary Layer Behavior on a Turbine Cascade
,” ASME Paper No. 95-GT-435.
10.
Schobeiri
,
M. T.
,
John
,
J.
, and
Pappu
,
K.
, 1997, “
Experimental Study on the Effect of Unsteadiness on Boundary Layer Development on a Linear Turbine Cascade
,”
Exp. Fluids
0723-4864,
23
, pp.
303
316
.
11.
Schobeiri
,
M. T.
, and
Wright
,
L.
, 2003, “
Advances in Unsteady Boundary layer Transition Research: Part I and II
,”
Int. J. Rotating Mach.
1023-621X,
9
(
1
), pp.
1
22
.
12.
Schobeiri
,
M. T.
, and
Chakka
,
P.
, 2002, “
Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
815
829
.
13.
Brunner
,
S.
,
Fottner
,
L.
, and
Schiffer
,
H.-P.
, 2000, “
Comparison of Two Highly Loaded Turbine Cascade Under the Influence of Wake-Induced Transition
,” ASME Paper No. 2000-GT-268.
14.
Cardamone
,
P.
,
Stadtmüller
,
P.
,
Fottner
,
L.
, and
Schiffer
,
H.-P.
, 2000, “
Numerical Investigation of the Wake-Boundary Layer Interaction on a Highly Loaded LP Turbine Cascade Blade
,” ASME Paper No. 2002-GT-30367.
15.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1996, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,” ASME Paper No. 96-GT-486.
16.
Kaszeta
,
R.
,
Simon
,
T. W.
, and
Ashpis
,
D. E.
, 2001, “
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
,” ASME Paper No. 2001-GT-0195.
17.
Lou
,
W.
, and
Hourmouziadis
,
J.
, 2000, “
Separation Bubbles Under Steady and Periodic Unsteady Main Flow Conditions
,” ASME Paper No. 200-GT-270.
18.
Schröder
,
Th.
, 1989, “
Measurements With Hot-Film Probes and Surface Mounted Hot Film Gages in a Multi-Stage Low Pressure Turbine
,” European Propulsion Forum, Bath, UK.
19.
Haueisen
,
V.
,
Hennecke
,
D. K.
, and
Schröder
,
T.
, 1997, “
Measurements With Surface Mounted Hot Film Sensors on Boundary Layer Transition in Wake Disturbed Flow
,” AGARD-CP-598.
20.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
225
237
.
21.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
, 2003, “
On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,” ASME Paper No. 2003-GT-38917,
ASME J. Fluids Eng.
0098-2202,
127
, pp.
503
513
.
22.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
, 2004, “
Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
663
676
.
23.
Schobeiri
,
M. T.
,
John
,
J.
, and
Pappu
,
K.
, 1996, “
Development of Two-Dimensional Wakes Within Curved Channels, Theoretical Framework and Experimental Investigation
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
506
518
.
24.
Hourmouziadis
,
J.
, 1989, “
Blading Design for Axial Turbomachines
,” AGARD, Lecture Series LS-167.
25.
Eifler
,
J.
, 1975, “
Zur Frage der freien turbulenten Strömungen, insbesondere hinter Ruhenden und bewegten Zylindern
,” Dissertation D-17, Technische Hochschule Darmstadt, Germany.
26.
Hedley
,
B. T.
, and
Keffer
,
F. J.
, 1974, “
Turbulent/Non-Turbulent Decisions in an Intermittent Flow
,”
J. Fluid Mech.
0022-1120,
64
, pp.
625
644
.
27.
Antonia
,
R. A.
, and
Bradshaw
,
P.
, 1971, Imp. College Aero. Rep. No. 71–04.
28.
Kovasznay
,
L. S. G.
,
Kibens
,
V.
, and
Blackwelder
,
R. F.
, 1970,
J. Fluid Mech.
0022-1120,
41
, p.
283
.
29.
Bradshaw
,
P.
, and
Murlis
,
J.
, 1973, Imp. College Aero. Tech. Note, No.
73
108
.
30.
Schobeiri
,
M. T.
, 2005, “
Intermittency Based Unsteady Boundary Layer Transition Modeling, Implementation Into Navier-Stokes Equations
,” ASME Paper No. GT2005–68375.
31.
Dhawan
,
S.
, and
Narasimha
,
R.
, 1958, “
Some Properties of Boundary Layer Flow During The Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
0022-1120,
3
, pp.
418
436
.
32.
Kline
,
S. J.
, and
McKlintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.