Prediction of flow field and heat transfer of high rotation numbers and density ratio flow in a square internal cooling channels of turbine blades with U-turn as tested by Wagner et al. (ASME J. Turbomach., 113, pp. 42–51, 1991) is the main focus of this study. Rotation, buoyancy, and strong curvature affect the flow within these channels. Due to the fact that RSM turbulence model can respond to the effects of rotation, streamline curvature and anisotropy without the need for explicit modeling, it is employed for this study as it showed improved prediction compared to isotropic two-equation models. The near wall region was modeled using enhanced wall treatment approach. The Reynolds Stress Model (RSM) was validated against available experimental data (which are primarily at low rotation and buoyancy numbers). The model was then used for cases with high rotation numbers (as much as 1.29) and high-density ratios (up to 0.4). Particular attention is given to how secondary flow, velocity and temperature profiles, turbulence intensity, and Nusselt number area affected by Coriolis and buoyancy/centrifugal forces caused by high levels of rotation and buoyancy in the immediate vicinity of the bend. The results showed that four-side-average Nu, similar to low Ro cases, increases linearly by increasing rotation number and, unlike low Ro cases, decreases slightly by increasing density ratio.

1.
Dean
,
W. R.
, 1927, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
0031-8086,
4
, pp.
4208
4223
.
2.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T.
1991, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
42
51
.
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
321
330
.
4.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Stuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
5.
Mochizuki
,
S.
,
Takamura
,
J.
,
Yamawaki
,
S.
, and
Yang
,
W.-J.
, 1994, “
Heat Transfer in Serpentine Flow Passages With Rotation
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
133
140
.
6.
Shih
,
T.-S.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
0045-7930,
24
, pp.
227
238
.
7.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
, 1996, “
LDA Investigation of the Flow Development Through Rotating U-Duct
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
590
596
.
8.
Hwang
,
G. J.
, and
Kuo
,
C. R.
, 1997, “
Experimental Studies and Correlations of Convective Heat Transfer in a Radially Rotating Serpentine Passage
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
460
466
.
9.
Iacovides
,
H.
,
Jackson
,
D. C.
,
Kelemenis
,
G.
,
Launder
,
B. E.
, and
Yuan
,
Y. M.
, 1999, “
Experiments on Local Heat Transfer in Rotating Square-Ended U-Bend
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
302
310
.
10.
Liou
,
T. M.
, and
Chen
,
C.-C.
, 1999, “
LDV Study of Developing Flows Through a Smooth Duct With a 180 deg Straight-Corner Turn
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
167
174
.
11.
Liou
,
T. M.
,
Cheng
,
M.-Y.
, and
Tsai
,
M.-H.
, 2002, “
Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-deg Ribs
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
260
268
.
12.
Taslim
,
M. E.
, 1999, “
45-Degree Round-Corner Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
1
9
.
13.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
, 1998, “
Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened in All Walls
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
256
570
.
14.
Taslim
,
M. E.
, and
Korotky
,
G. J.
, 1998, “
Low-Aspect Ratio Rib Heat Transfer Coefficient Measurements in Square Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
831
838
.
15.
Taslim
,
M. E.
, and
Lengkong
,
A.
, 1998, “
45 deg. Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
571
580
.
16.
Taslim
,
M. E.
, 2000, “
Aero-Thermal Performance of Internal Cooling Systems in Turbomachines
,”
VKI Lecture Series 2000-03
,
von Karman Institute for Fluid Mechanics
, Rhode Saint Genese, Belgium.
17.
Prandtl
,
L.
, 1929, Report NACA TM-625.
18.
Bradshaw
,
P.
, 1969, “
The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow
,”
J. Fluid Mech.
0022-1120,
36
, pp.
177
191
.
19.
Launder
,
B. E.
,
Priddin
,
C. H.
, and
Sarma
,
B. I.
, 1977, “
The Calculation of Turbulent Boundary Layers on Spinning and Curved Surfaces
,”
ASME J. Fluids Eng.
0098-2202,
99
, pp.
231
239
.
20.
Wilcox
,
D. C.
, and
Chambers
,
T. L.
, 1993, “
Streamline Curvature Effects on Turbulent Boundary Layers
,”
AIAA J.
0001-1452,
15
, pp.
574
580
.
21.
Launder
,
B. E.
, 1989, “
Second-Moment Closure: Present … and Future?
”,
Int. J. Heat Fluid Flow
0142-727X,
10
, pp.
282
300
.
22.
Bredberg
,
J.
, 2002, “
Turbulence Modelling for Internal Cooling of Gas-Turbine Blades
,” PhD thesis, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg.
23.
Hellsten
,
A.
, 1998, “
Some Improvements in Menters k-Omega SST Turblence Model
,”
29th AIAA Fluid Dynamics Conference
, Paper No. AIAA 98-2554.
24.
Lin
,
Y.-L.
,
Shih
,
T. I.-P.
,
Stephens
,
M. A.
, and
Chyu
,
M. K.
, 2001, “
A Numerical Study of Flow and Heat Transfer in a Smooth and a Ribbed U-Duct With and Without Rotation
,”
ASME J. Heat Transfer
0022-1481, pp.
219
232
.
25.
Luo
,
J.
, and
Lakshminarayana
,
B.
, 1997, “
Analysis of Streamline Curvature Effects on Wall-Bounded Turbulent Flows
,”
AIAA J.
0001-1452,
35
, pp.
1273
1279
.
26.
Luo
,
J.
, and
Lakshminarayana
,
B.
, 1997, “
Prediction of Strongly Curved Turbulent Duct Flows With Reynolds Stress Model
,”
AIAA J.
0001-1452,
35
, pp.
91
98
.
27.
Rumsey
,
C. L.
,
Gatski
,
T. B.
, and
Morrison
,
J. H.
, 2000, “
Turbulence Model Predictions of Strongly Curved Flow in a U-Duct
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1394
1402
.
28.
Zhang
,
J.
,
Zhang
,
B.
, and
Ju
,
J.
, 2001, “
Fluid Flow in a Rotating Curved Rectangular Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
583
592
.
29.
Besserman
,
D. L.
, and
Tanrikut
,
S.
, 1991, “
Comparison of Heat Transfer Measurements With Computations for Turbulent Flow Around a 180 Degree Bend
,” ASME Paper no.91-GT-2.
30.
Choi
,
Y. D.
,
Iacovides
,
H.
, and
Launder
,
B. E.
1989, “
Numerical Computation of Turbulent Flow in a Square-Sectioned 180 deg Bend
,”
ASME J. Fluids Eng.
0098-2202
111
, pp.
59
68
.
31.
Iacovides
,
H.
,
Launder
,
B. E.
, and
Li
,
H.-Y.
, 1996, “
Application of a Reflection-Free DSM to Turbulent Flow and Heat Transfer in Square-Sectioned U-Bend
,”
Exp. Therm. Fluid Sci.
0894-1777,
13
, pp.
419
429
.
32.
Iacovides
,
H.
,
Launder
,
B. E.
, and
Li
,
H.-Y.
, 1996, “
The Computation of Flow Development Through Stationary and Rotating U-duct of Strong Curvature
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
22
33
.
33.
Nikas
,
K.-S.
, and
Iacovides
,
H.
, 2001, “
The Computation of Flow and Heat Transfer Through Square-Ended U-Bends, using Low-Reynolds Number Models
,”
2nd Int. Symp. on Turbulent Shear Flows Phenomena
, Stockholm, pp.
229
234
.
34.
Rigby
,
D. L.
,
Steinthorsson
,
E.
, and
Ameri
,
A.
, 1996, “
Internal Passage Heat Transfer Prediction Using Multiblock Grids and k-o Turbulence Model
,” ASME paper No. 97-GT-431.
35.
Bonhoff
,
B.
,
Tomm
,
U.
,
Johnson
,
B. V.
, and
Jennions
,
I.
, 1997, “
Heat Transfer Predictions for Rotating U-Shaped Coolant Channels With Skewed Ribs and With Smooth Walls
,” ASME paper no.97-GT-162.
36.
Chen
,
H. C.
,
Jang
,
Y. J.
, and
Han
,
J. C.
, 2000, “
Computation of Heat Transfer in Rotating Two-Pass Square Channels by a Second-Moment Closure Model
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1603
1616
.
37.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
, 2004, “
Effect of Coriolis and Centrifugal Forces on Turbulence and Transport at High Rotation and Buoyancy Numbers in Smooth Internal Cooling Channels
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno
, NV, AIAA, Reston, VA.
38.
Gibson
,
M. M.
, and
Launder
,
B. E.
, 1978, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120
86
, pp.
491
511
.
39.
Launder
,
B. E.
,
Reece
,
G. J.
and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
(
3
), pp.
537
566
.
40.
The FLUENT User’s Guide, Version 6.2, FLUENT Inc., Lebanon, NH.
41.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
, McGraw-Hill.
42.
Bonhoff
,
B.
,
Schneider
,
T.
,
Johnson
,
B.
, and
Jennions
,
I.
, 1997, “
Prediction for Turbulent Flow in Rotating and Nonrotating Coolant Channels
,”
2nd Int. Symp. On Turbulence, Heat and Mass Transfer
, Delft, The Netherlands, pp.
883
892
.
You do not currently have access to this content.