The paper presents an experimental study of heat/mass transfer coefficient in 1:4 rectangular channel with smooth or ribbed walls for Reynolds number in the range of 5000–40,000 and rotation numbers in the range of 0–0.12. Such passages are encountered close to the mid-chord sections of the turbine blade. Normal ribs (e/Dh=0.3125 and P/e=8) are placed on the leading and the trailing sides only. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. For purposes of comparison, selected measurements are also performed in a 1:1 cross section. The local mass-transfer data in the fully developed region is averaged to study the effect of the Reynolds and the rotation numbers. The spanwise mass transfer distributions in the smooth and the ribbed cases are also examined.

1.
Park
,
C. W.
,
Lau
,
S. C.
, and
Kukreja
,
R. T.
,
1998
, “
Heat/Mass Transfer in a Rotating Two-Pass Channel with Transverse Ribs
,”
J. Thermophys. Heat Transfer
,
12
, pp.
80
86
.
2.
Myrum
,
T.
,
Acharya
,
S.
,
Sinha
,
S.
, and
Qiu
,
X.
,
1996
, “
The Effect of Placing Vortex Generators Above Ribs in Ribbed Ducts on the Flow, Flow Temperature, and Heat Transfer Behavior
,”
ASME J. Heat Transfer
,
118
, pp.
294
300
.
3.
Eliades
,
V.
,
Nikitopoulos
,
D. E.
, and
Acharya
,
S.
,
2001
, “
Mass Transfer Distribution in Rotating, Two-Pass Ribbed Channels with Vortex Generators
,”
J. Thermophys. Heat Transfer
,
15
, pp.
266
274
.
4.
Acharya
,
S.
,
Eliades
,
V.
, and
Nikitopoulos
,
D. E.
,
2001
, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels with Profiled Ribs: Average Results
,”
ASME J. Turbomach.
,
23
, pp.
97
106
.
5.
Nikitopoulos
,
D. E.
,
Eliades
,
V.
, and
Acharya
,
S.
,
2001
, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels with Profiled Ribs: Detailed Measurements
,”
ASME J. Turbomach.
,
23
, pp.
107
114
.
6.
Zhou
,
F.
, and
Acharya
,
S.
,
2001
, “
Mass/Heat Transfer in Dimpled Turbine-Blade Coolant Passages
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
424
431
.
7.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages with Smooth Walls
,”
ASME J. Turbomach.
,
113
, pp.
321
330
.
8.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages with Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
, pp.
113
123
.
9.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages with Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
, pp.
847
857
.
10.
Kukreja
,
R. T.
,
Park
,
C. W.
, and
Lau
,
S. C.
,
1998
, “
Heat (Mass) Transfer in a Rotating Two Pass Square Channel-Part-II: Local Transfer Coefficient, Smooth Channel
,”
Int. J. Rotating Mach.
,
4
, pp.
1
15
.
11.
Han
,
J. C.
,
May
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators
,”
ASME J. Heat Transfer
,
110
, pp.
321
328
.
12.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1989
, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1699
1630
.
13.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels with Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
, pp.
2891
2903
.
14.
Tekriwal, P., 1996, “Effect of Aspect Ratio on Buoyancy Driven Reverse Flow Near the Leading Wall of Rotating Cooling Passages,” ASME Turbo Expo, 96-GT-173.
15.
Dutta
,
S.
,
Andrews
,
M. J.
, and
Han
,
J. C.
,
1996
, “
Prediction of Turbulent Heat Transfer in Rotating Smooth Square Ducts
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2505
2514
.
16.
Dutta
,
S.
,
Andrews
,
M. J.
, and
Han
,
J. C.
,
1996
, “
On Flow Separation with Adverse Rotational Buoyancy
,”
ASME J. Heat Transfer
,
118
, pp.
977
979
.
17.
Sparrow
,
E. M.
, and
Taq
,
W. Q.
,
1984
, “
Symmetric vs Asymmetric Periodic Disturbances at the Walls of a Heated Flow Passage
,”
Int. J. Heat Mass Transfer
,
27
, pp.
2133
2144
.
18.
Souza Mendes
,
P. R.
,
1991
, “
The Naphthalene Sublimation Technique
,”
Exp. Therm. Fluid Sci.
,
4
, pp.
510
523
.
19.
Han
,
J. C.
,
Zhang
,
Y.
, and
Kalluehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two Pass Square Channel with Smooth Walls
,”
ASME J. Turbomach.
,
115
, pp.
912
920
.
20.
Johnson, B. V., Wagner, J. H., and Steuber, G. D., 1993, “Effects of Rotation on Coolant Passage Heat Transfer,” NASA Contractor Report 4396, Vol. II.
21.
McAdams, W., 1954, “Heat Transmission,” 3rd Ed., McGraw-Hill Publishing Co., New York.
22.
Sogin
,
H.
,
1958
, “
Sublimation from Disks to Air Streams Flowing Normal to their Surfaces
,”
Trans. ASME
,
80
, pp.
61
69
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
24.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
J. Basic Eng.
,
81
, pp.
123
134
.
You do not currently have access to this content.