The general theory for three-dimensional flow in subsonic and supersonic turbo-machines has recently been extended to transonic turbomachines. In this paper, which is Part II of the study, quasi- and full three-dimensional solutions of the transonic flow in the CAS rotor are presented. The solutions are obtained by iterative calculation between a number of S1 stream filaments and, respectively, a central S2m Stream filament and a number of S2 stream filaments. Relatively simple methods developed recently for solving the transonic flow along S1 and S2 stream filaments are used in the calculation. The three-dimensional flow fields in the CAS rotor obtained by the present method are presented in detail with special emphasis on the converging process for the configuration of the S1 and S2 stream filaments. The three-dimensional flow fields obtained in the quasi- and full three-dimensional solutions are quite similar, but the former gives a lower peak Mack number and a smaller circumferential variation in Mach number than the latter. A comparison between the theoretical solution and the Laser-2-Focus measurement shows that the character of the transonic flow including the three-dimensional shock structure is in good agreement, but the measured velocity is slightly higher than the calculated one over most of the flow field.

This content is only available via PDF.
You do not currently have access to this content.