Graphical Abstract Figure

Effect of pore size on EHD film. Pore size is a key factor in influencing the tribological properties of porous polyimide, as it significantly affects the elastohydrodynamic (EHD) film on the contact surfaces

Graphical Abstract Figure

Effect of pore size on EHD film. Pore size is a key factor in influencing the tribological properties of porous polyimide, as it significantly affects the elastohydrodynamic (EHD) film on the contact surfaces

Close modal

Abstract

Pore size is critical to the oil-storage performance and tribological properties of porous polyimide (PPI). To study the effect of pore size, four PPIs with different pore sizes and similar porosities were fabricated. The mechanical, oil-absorption, and tribological properties of the PPIs were investigated. According to the results, PPIs with larger pores demonstrate faster oil absorption and a higher oil-filling rate. However, larger pores contribute to a rougher surface and lower oil retention. These dual effects result in PPIs with larger pores displaying a low friction coefficient at low speeds but a high friction coefficient at high speeds. The effect of pore sizes on elastohydrodynamic (EHD) film and Stribeck curves were discussed from seepage effect and viscoelasticity of PPI, respectively. The permeability of the four PPIs was calculated based on mercury intrusion test results. Larger pores lead to higher permeability of PPI at lower pressure, which makes it easier to reduce thickness of EHD film, causing high friction and wear. The damping effect of PPIs, rather than a viscous flow, results in a slight increase in friction coefficient at high speed under micro-oil lubrication. Considering the tribological and oil-absorption properties, the preferred particle size of polyimide molding powder is 25–48 μm.

References

1.
Lin
,
Y.
,
He
,
R.
,
Xu
,
Y.
,
Zhang
,
J.
,
Wetzel
,
B.
, and
Zhang
,
G.
,
2023
, “
Significance of Nickel Particles on Reducing Friction and Wear of Polyimide Subjected to Harsh Boundary Lubrication Conditions
,”
Tribol. Int.
,
178
, pp.
108063
108074
.
2.
Gao
,
X.
,
Chen
,
H.
,
Yan
,
H.
,
Huang
,
C.
,
Wu
,
L.
, and
Wang
,
T.
,
2023
, “
Superlubricity by Polyimide-Induced Alignment
,”
Friction
,
11
(
9
), pp.
1690
1707
.
3.
Xue
,
Y. H.
,
Yan
,
S. C.
, and
Chen
,
Y.
,
2022
, “
Thermomechanical and Tribological Properties of Polyimide and Polyethersulfone Blends Reinforced With Expanded Graphite Particles at Various Elevated Temperatures
,”
J. Appl. Polym.
,
139
(
28
), pp.
52512
52528
.
4.
Zhang
,
D.
,
Wang
,
C.
,
Wang
,
Q.
, and
Wang
,
T.
,
2019
, “
High Thermal Stability and Wear Resistance of Porous Thermosetting Heterocyclic Polyimide Impregnated With Silicone Oil
,”
Tribol. Int.
,
140
, pp.
105728
105738
.
5.
Lv
,
M.
,
Wang
,
C.
,
Wang
,
Q.
,
Wang
,
T.
, and
Liang
,
Y.
,
2015
, “
Highly Stable Tribological Performance and Hydrophobicity of Porous Polyimide Material Filled With Lubricants in a Simulated Space Environment
,”
RSC Adv.
,
5
(
66
), pp.
53543
53549
.
6.
Jia
,
W.
,
Yang
,
S.
,
Ren
,
S.
,
Ma
,
L.
, and
Wang
,
J.
,
2020
, “
Preparation and Tribological Behaviors of Porous Oil-Containing Polyimide/Hollow Mesoporous Silica Nanospheres Composite Films
,”
Tribol. Int.
,
145
, pp.
106184
106192
.
7.
Yan
,
Z.
,
Jiang
,
D.
,
Fu
,
Y.
,
Qiao
,
D.
,
Gao
,
X.
,
Feng
,
D.
,
Sun
,
J.
,
Weng
,
L.
, and
Wang
,
H.
,
2018
, “
Vacuum Tribological Performance of WS2–MoS2 Composite Film Against Oil-Impregnated Porous Polyimide: Influence of Oil Viscosity
,”
Tribol. Lett
,
67
(
1
), pp.
2
12
.
8.
Zhang
,
D.
,
Wang
,
T.
,
Wang
,
Q.
, and
Wang
,
C.
,
2017
, “
Selectively Enhanced Oil Retention of Porous Polyimide Bearing Materials by Direct Chemical Modification
,”
J. Appl. Polym.
,
134
(
29
), pp.
45106
45113
.
9.
Ruan
,
H.
,
Zhang
,
Y.
,
Wang
,
Q.
,
Wang
,
C.
, and
Wang
,
T.
,
2022
, “
A Novel Earthworm-Inspired Smart Lubrication Material With Self-Healing Function
,”
Tribol. Int.
,
165
, pp.
107303
107313
.
10.
Bertrand
,
P. A.
, and
Carré
,
D. J.
,
1997
, “
Oil Exchange Between Ball Bearings and Porous Polyimide Ball Bearing Retainers
,”
Tribol. Trans
,
40
(
2
), pp.
294
302
.
11.
Chen
,
W.
,
Zhu
,
P.
,
Liang
,
H.
, and
Wang
,
W.
,
2022
, “
Characteristic Parameter to Predict the Lubricant Outflow From Porous Polyimide Retainer Material
,”
Tribol. Int.
,
173
, pp.
107596
107604
.
12.
Li
,
J.
,
Liu
,
J.
,
Li
,
K.
,
Zhou
,
N.
,
Liu
,
Y.
,
Hu
,
X.
,
Yin
,
S.
, and
Wang
,
G.
,
2023
, “
Tribological Properties of Oil-Impregnated Polyimide in Double-Contact Friction Under Micro-Oil Lubrication Conditions
,”
Friction
,
11
(
8
), pp.
1493
1504
.
13.
Wang
,
J.
,
Zhao
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2017
, “
Investigation of Porous Polyimide Lubricant Retainers to Improve the Performance of Rolling Bearings Under Conditions of Starved Lubrication
,”
Wear
,
380–381
, pp.
52
58
.
14.
Gao
,
S.
,
Han
,
Q.
,
Zhou
,
N.
,
Pennacchi
,
P.
, and
Chu
,
F.
,
2022
, “
Stability and Skidding Behavior of Spacecraft Porous Oil-Containing Polyimide Cages Based on High-Speed Photography Technology
,”
Tribol. Int.
,
165
, pp.
107294
107307
.
15.
Chen
,
W.
,
Wang
,
W.
,
Liang
,
H.
, and
Zhu
,
P.
,
2022
, “
Study on Lubricant Release-Recycle Performance of Porous Polyimide Retainer Materials
,”
Langmuir
,
38
(
37
), pp.
11440
11450
.
16.
Yin
,
Y.
,
Shi
,
P.
,
Zhang
,
S.
,
Jiang
,
Y.
,
Qing
,
T.
,
Wang
,
Y.
,
Qian
,
L.
,
Zhang
,
J.
, and
Chen
,
L.
,
2023
, “
Improving Tribological Performance of Porous Polyimide by Surface Polishing
,”
ACS Appl. Polyme.
,
5
(
9
), pp.
6808
6816
.
17.
Wang
,
C.
,
Zhang
,
D.
,
Wang
,
Q.
,
Ruan
,
H.
, and
Wang
,
T.
,
2020
, “
Effect of Porosity on the Friction Properties of Porous Polyimide Impregnated With Poly-α-Olefin in Different Lubrication Regimes
,”
Tribol. Lett
,
68
(
4
), pp.
102
111
.
18.
Ruan
,
H.
,
Zhang
,
Y.
,
Song
,
F.
,
Wang
,
Q.
,
Wang
,
C.
, and
Wang
,
T.
,
2022
, “
Efficacy of Hierarchical Pore Structure in Enhancing the Tribological and Recyclable Smart Lubrication Performance of Porous Polyimide
,”
Friction
,
11
(
6
), pp.
1014
1026
.
19.
Chen
,
W.
,
Wang
,
W.
,
Zhu
,
P.
, and
Ge
,
X.
,
2023
, “
Effects of Pore Size on the Lubrication Properties of Porous Polyimide Retainer Material
,”
Friction
,
11
(
8
), pp.
1419
1429
.
20.
Dunn
,
A. C.
,
Sawyer
,
W. G.
, and
Angelini
,
T. E.
,
2014
, “
Gemini Interfaces in Aqueous Lubrication With Hydrogels
,”
Tribol. Lett.
,
54
(
1
), pp.
59
66
.
21.
Xu
,
X.
,
Shu
,
X.
,
Pei
,
Q.
,
Qin
,
H.
,
Guo
,
R.
,
Wang
,
X.
, and
Wang
,
Q.
,
2022
, “
Effects of Porosity on the Tribological and Mechanical Properties of Oil-Impregnated Polyimide
,”
Tribol. Int.
,
170
, pp.
107502
107513
.
22.
Lu
,
Y.
, and
Liu
,
Z.
,
2013
, “
Coupled Effects of Fractal Roughness and Self-Lubricating Composite Porosity on Lubrication and Wear
,”
Tribol. Trans
,
56
(
4
), pp.
581
591
.
23.
Guegan
,
J.
,
Kadiric
,
A.
,
Gabelli
,
A.
, and
Spikes
,
H.
,
2016
, “
The Relationship Between Friction and Film Thickness in EHD Point Contacts in the Presence of Longitudinal Roughness
,”
Tribol. Lett
,
64
(
3
), pp.
33
48
.
24.
Ye
,
J.
,
Li
,
J.
,
Qing
,
T.
,
Huang
,
H.
, and
Zhou
,
N.
,
2021
, “
Effects of Surface Pore Size on the Tribological Properties of Oil-Impregnated Porous Polyimide Material
,”
Wear
,
484–485
, pp.
204042
204052
.
25.
Ruan
,
H.
,
Shao
,
M.
,
Zhang
,
Y.
,
Wang
,
Q.
,
Wang
,
C.
, and
Wang
,
T.
,
2022
, “
Supramolecular Oleogel-Impregnated Macroporous Polyimide for High Capacity of Oil Storage and Recyclable Smart Lubrication
,”
ACS Appl. Mater.
,
14
(
8
), pp.
10936
10946
.
26.
Hamrock
,
B.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III-Fully Flooded Results
,”
ASME J. Lubr. Tech.
,
99
(
2
)
,
pp.
264
275
.
27.
Shin
,
C.-H.
,
2022
, “
Alternative Flow Model of Anisotropic Porous Media
,”
J. Nat. Gas Sci. Eng.
,
108
, pp.
104829
104846
.
28.
Masoodi
,
R.
,
Pillai
,
K. M.
, and
Varanasi
,
P. P.
,
2007
, “
Darcy's Law-Based Models for Liquid Absorption in Polymer Wicks
,”
AIChE J.
,
53
(
11
), pp.
2769
2782
.
29.
Niessner
,
J.
,
Berg
,
S.
, and
Hassanizadeh
,
S. M.
,
2011
, “
Comparison of Two-Phase Darcy's Law With a Thermodynamically Consistent Approach
,”
Transp. Porous Media
,
88
(
1
), pp.
133
148
.
30.
Putignano
,
C.
,
2020
, “
Soft Lubrication: A Generalized Numerical Methodology
,”
J. Mech. Phys. Solids
,
134
, pp.
103748
103760
.
31.
Galda
,
L.
,
Sep
,
J.
,
Olszewski
,
A.
, and
Zochowski
,
T.
,
2019
, “
Experimental Investigation Into Surface Texture Effect on Journal Bearings Performance
,”
Tribol. Int.
,
136
, pp.
372
384
.
32.
Bhushan
,
B.
, and
Ko
,
P. L. J. A. M. R.
,
2003
, “
Introduction to Tribology
,”
Appl. Mech. Rev.
,
56
(
1
), pp.
B6
B7
.
33.
Kocun
,
M.
,
Mueller
,
W.
,
Maskos
,
M.
,
Mey
,
I.
,
Geil
,
B.
,
Steinem
,
C.
, and
Janshoff
,
A.
,
2010
, “
Viscoelasticity of Pore-Spanning Polymer Membranes Derived From Giant Polymersomes
,”
Soft Matter
,
6
(
11
), pp.
2508
2516
.
34.
Nguyen
,
T.
,
Li
,
J.
,
Sun
,
L.
,
Tran
,
D.
, and
Xuan
,
F.
,
2021
, “
Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model
,”
Polymers
,
13
(
13
), pp.
2203
2221
.
35.
Zhang
,
H.
,
Lu
,
T.
,
Zhang
,
Q.
,
Zhou
,
Y.
,
Zhu
,
H.
,
Harms
,
J.
,
Yang
,
X.
,
Wan
,
M.
, and
Insana
,
M. F.
,
2020
, “
Solutions to Ramp-Hold Dynamic Oscillation Indentation Tests for Assessing the Viscoelasticity of Hydrogel by Kelvin-Voigt Fractional Derivative Modeling
,”
Mech. Mater
,
148
, pp.
103431
103446
.
You do not currently have access to this content.