Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In endoscopic liver vascular insertion surgeries, during the process of angiographic operation, the success of vascular staining depends on precise needle insertion control which heavily relies on experienced surgeons. Endoscopic vascular insertion surgical navigation system shows the potential to improve position precision; however, it relies on needle–tissue interaction model and parameter identification to provide essential information for improving needle insertion accuracy, in which the friction coefficient is an important parameter but difficult to determine. In this paper, a novel needle–tissue friction coefficient identification method was proposed with unknown tissue Young's modulus under endoscopic liver surgery scenarios. A modified friction coefficient model was proposed including the adhesion and elastic friction component to describe needle–tissue dynamic interaction process which can predict the friction coefficient more precisely. The proposed parameter estimation method based on the modified friction model can simultaneously estimate friction coefficient and Young's modulus. The proposed method was demonstrated by the friction coefficient measurement experiment. The results showed that the friction coefficient model prediction results agreed well with expected value. The proposed method can be applied to provide essential tissue-needle interactive information to improve needle insertion precision in endoscopic liver vascular insertion surgery scenarios.

References

1.
Prevost
,
G. A.
,
Eigl
,
B.
,
Paolucci
,
I.
,
Rudolph
,
T.
,
Peterhans
,
M.
,
Weber
,
S.
,
Beldi
,
G.
,
Candinas
,
D.
, and
Lachenmayer
,
A.
,
2019
, “
Efficiency, Accuracy and Clinical Applicability of a New Image-Guided Surgery System in 3D Laparoscopic Liver Surgery
,”
J. Gastrointest. Surg.
,
24
(
10
), pp.
2251
2258
.
2.
Espinel
,
Y.
,
Özgür
,
E.
,
Calvet
,
L.
,
Le Roy
,
B.
,
Buc
,
E.
, and
Bartoli
,
A.
,
2020
, “
Combining Visual Cues With Interactions ¨ for 3D–2D Registration in Liver Laparoscopy
,”
Ann. Biomed. Eng.
,
48
(
02
), pp.
1712
1727
.
3.
Schneider
,
C.
,
Thompson
,
S.
,
Totz
,
J.
,
Song
,
Y.
,
Allam
,
M.
,
Sodergren
,
M. H.
,
Desjardins
,
A. E.
, et al
,
2020
, “
Comparison of Manual and Semi-Automatic Registration in Augmented Reality Image-Guided Liver Surgery: A Clinical Feasibility Study
,”
Surg. Endosc.
,
34
(
10
), pp.
4702
4711
.
4.
Teatini
,
A.
,
Perez de Frutos
,
J.
,
Eigl
,
B.
,
Pelanis
,
E.
,
Aghayan
,
D.
,
Lai
,
M.
,
Kumar
,
R.
,
Palomar
,
R.
,
Edwin
,
B.
, and
Elle
,
O. J.
,
2020
, “
Influence of Sampling Accuracy on Augmented Reality for Laparoscopic Image-Guided Surgery
,”
Minim. Invasive Ther. Allied Technol.
,
30
(
03
), pp.
1
10
.
5.
Pelanis
,
E.
,
Teatini
,
A.
,
Eigl
,
B.
,
Regensburger
,
A.
,
Alzaga
,
A.
,
Kumar
,
R.
,
Rudolph
,
T.
, et al
,
2020
, “
Evaluation of a Novel Navigation Platform for Laparoscopic Liver ¨ Surgery With Organ Deformation Compensation Using Injected Fiducials
,”
Med. Image Anal.
,
69
(
12
), p.
101946
.
6.
Le Roy
,
B.
,
Abdallah
,
M.
,
Espinel
,
Y.
,
Calvet
,
L.
,
Pereira
,
B.
,
Ozgur
,
E.
,
Pezet
,
D.
,
Buc
,
E.
, and
Bartoli
,
A.
,
2020
, “
A Case Series Study of Augmented Reality in Laparoscopic Liver Resection With a Deformable Preoperative Model
,”
Surg. Endosc.
,
34
(
12
), pp.
5642
5648
.
7.
Podder
,
T.
,
Clark
,
D.
,
Fuller
,
D.
,
Sherman
,
J.
,
Messing
,
E.
,
Rubens
,
D.
,
Strang
,
J.
,
Ng
,
W.
, and
Yu
,
Y.
,
2005
, “
Sci-PM Fri—05: Effects of Coating on Friction Force During Needle Insertion in Soft Materials
,”
Med. Phys.
,
32
(
07
), p.
2421
.
8.
Li
,
P.
,
Yang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Needle-Tissue Interactive Mechanism and Steering Control in Image-Guided Robot-Assisted Minimally Invasive Surgery: A Review
,”
Med. Biol. Eng. Comput.
,
56
(
04
), pp.
931
949
.
9.
Backes
,
C.
, and
Okamura
,
A.
,
2002
, “
Modeling of Needle Insertion Forces for Robot-Assisted Percutaneous Therapy
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation, ICRA 2002
,
Washington, DC
,
May 11–15
,
Vol. 2, pp. 2085—2091
.
10.
Kataoka
,
H.
,
Washio
,
T.
,
Chinzei
,
K.
,
Mizuhara
,
K.
,
Backes
,
C.
, and
Okamura
,
A.
,
2002
, “
Measurement of Tip and Friction Force Acting on a Needle During Penetration
,”
Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention–Part I
,
Tokyo, Japan
,
Sept. 25–28
, pp.
216
223
.
11.
Hing
,
J. T.
,
Brooks
,
A. D.
, and
Desai
,
J. P.
,
2006
, “
Reality-Based Needle Insertion Simulation for Haptic Feedback in Prostate Brachytherapy
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
,
p. 619
.
12.
Carra
,
A.
, and
Avila Vilchis
,
J.
,
2010
, “
Needle Insertion Modeling Through Several Tissue Layers
,”
Informatics in Control, Automation and Robotics (CAR), 2010 2nd International Asia Conference on
,
Wuhan, China
,
Mar. 6–7
, pp.
237
240
.
13.
Assaad
,
W.
,
Jahya
,
A.
,
Moreira
,
P.
, and
Misra
,
S.
,
2015
, “
Finite-Element Modeling of a Bevel-Tipped Needle Interacting With Gel
,”
J. Mech. Med. Biol.
,
15
(
04
), pp.
1550079
.
14.
Kong
,
X.
,
Zhou
,
P.
, and
Wu
,
C.
,
2011
, “
Numerical Simulation of Microneedles' Insertion Into Skin
,”
Comput. Meth. Biomech. Biomed. Eng.
,
14
(
04
), pp.
827
835
.
15.
Barnett
,
A.
,
Lee
,
Y.-S.
, and
Moore
,
J.
,
2015
, “
Fracture Mechanics Model of Needle Cutting Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011005
.
16.
Urrea
,
F.
,
Casanova
,
F.
,
Orozco
,
G.
, and
García
,
J.
,
2015
, “
Evaluation of the Friction Coefficient, the Radial Stress, and the Damage Work During Needle Insertions Into Agarose Gels
,”
J. Mech. Behav. Biomed. Mater.
,
56
(
12
), pp.
98
105
.
17.
Li
,
W.
,
Zhou
,
P.
,
Lin
,
W.-C.
,
Nteziyaremye
,
V.
,
Yamaguchi
,
H.
,
Guo
,
D.
, and
Shih
,
A.
,
2016
, “
Effects of Needle Inner Surface Topography on Friction and Biopsy Length
,”
Int. J. Mech. Sci.
,
119
(
11
), pp.
412
418
.
18.
Oldfield
,
M.
,
Dini
,
D.
,
Jaiswal
,
T.
, and
Rodriguez y Baena
,
F.
,
2013
, “
The Significance of Rate Dependency in Blade Insertions Into a Gelatin Soft Tissue Phantom
,”
Tribol. Int.
,
63
(
07
), pp.
226
234
.
19.
Fukushima
,
Y.
,
Saito
,
K.
, and
Naemura
,
K.
,
2013
, “
Estimation of the Cutting Force Using the Dynamic Friction Coefficient Obtained by Reaction Force During the Needle Insertion
,”
Procedia CIRP
,
5
(
12
), pp.
265
269
.
20.
Gao
,
F.
,
Song
,
Q.
,
Lu
,
Z.
, and
Liu
,
Z.
,
2021
, “
Influence of Surface Characteristics of Medical Needle on Puncture Process
,”
J. Mech. Eng.
,
57
(
11
), pp.
44
51
.
21.
Popov
,
V.
,
Voll
,
L.
,
Kusche
,
S.
,
Li
,
Q.
, and
Rozhkova
,
S.
,
2018
, “
Generalized Master Curve Procedure for Elastomer Friction Taking Into Account Dependencies on Velocity, Temperature and Normal Force
,”
Tribol. Int.
,
120
(
01
), pp.
376
380
.
22.
Lian
,
Y.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2011
, “
Coupling of Finite Element Method with Material Point Method by Local Multi-Mesh Contact Method
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
11
), pp.
3482
3494
.
23.
Lian
,
Y.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2012
, “
An Adaptive Finite Element Material Point Method and Its Application in Extreme Deformation Problems
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
(
10
), pp.
275
285
.
24.
Song
,
Y.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2020
, “
A Non-Penetration FEM-MPM Contact Algorithm for Complex Fluid-Structure Interaction Problems
,”
Comput. Fluids
,
213
(
12
), p.
104749
.
25.
Li
,
M.
,
Lei
,
Y.
,
Gao
,
D.
,
Hu
,
Y.
, and
Zhang
,
X.
,
2021
, “
A Novel Material Point Method (MPM) Based Needle-Tissue Interaction Model
,”
Comput. Meth. Biomech. Biomed. Eng.
,
24
(
03
), pp.
1
15
.
26.
Sulsky
,
D.
,
Chen
,
Z.
, and
Schreyer
,
H.
,
1994
, “
A Particle Method for History-Dependent Materials
,”
Comput. Methods Appl. Mech. Eng.
,
118
(
09
), pp.
179
196
.
27.
Zhang
,
X.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2016
,
The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases
,
Academic Press
,
Cambridge, MA
.
28.
Liang
,
Y.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2019
, “
An Efficient Staggered Grid Material Point Method
,”
Comput. Methods Appl. Mech. Eng.
,
352
(
04
), pp.
85
109
.
29.
Ni
,
R.
, and
Zhang
,
X.
,
2020
, “
A Precise Critical Time Step Formula for the Explicit Material Point Method
,”
Int. J. Numer. Methods Eng.
,
121
(
07
), pp.
4989
5016
.
30.
Jiang
,
S.
,
Liu
,
S.
, and
Feng
,
W.
,
2011
, “
PVA Hydrogel Properties for Biomedical Application
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
10
), pp.
1228
1233
.
31.
Wang
,
K.-N.
,
Li
,
S.-X.
,
Bu
,
Z.
,
Zhao
,
F.-X.
,
Zhou
,
G.
,
Zhou
,
S.-J.
, and
Chen
,
Y.
,
2024
, “
Sbcnet: Scale and Boundary Context Attention Dual-Branch Network for Liver Tumor Segmentation
,”
IEEE J. Biomed. Health Inform.
,
28
(
5
), pp.
2854
2865
.
32.
Ananda
,
S.
,
Jain
,
R.
,
Li
,
Y.
,
Iwamoto
,
Y.
,
Han
,
X.-H.
,
Kanasaki
,
S.
,
Hu
,
H.
, and
Chen
,
Y.-W.
,
2023
, “
A Boundary Enhanced Liver Segmentation Network for Multi-Phase CT Images With Unsupervised Domain Adaptation
,”
Bioengineering
,
10
(
07
), pp.
899
.
33.
Hu
,
Y.
,
Li
,
M.
, and
Lei
,
Y.
,
2021
, “
Friction Analysis in Needle Insertion Into Soft Tissue
,”
Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference
,
Virtual Online
,
June 21–25
,
p. V001T03A008
.
You do not currently have access to this content.