Abstract

In modern industries, enhancing the efficiency and performance of electric motors is a critical requirement. Pulse-width modulation (PWM) inverters utilized to enhance the energy efficiency of electric motors generate complex shaft voltages and bearing currents, leading to bearing electrical erosion. This study proposes a new method for detecting high-frequency (HF) circulating current and electric discharge machining (EDM) current signals in bearings for electric motors. The proposed method utilizes common mode voltage (CMV) and bearing current data, analyzing the relationship between these signals. Subsequently, it applies filtering techniques and differentiation for signal preprocessing. The interquartile range (IQR) method is used to detect outliers, classify HF circulating current and EDM current signals, and perform time-series data clustering to determine the occurrence frequency and timing of EDM signals. Finally, the implementation outcomes of the proposed method are validated, and its classification efficacy is evaluated and benchmarked against established methodologies through a comprehensive performance analysis. The proposed technique is anticipated to be applicable to the maintenance and prediction of modern electric motors in future developments, contributing to enhanced durability and reliability.

References

1.
Tawfiq
,
K. B.
,
Güleç
,
M.
, and
Sergeant
,
P.
,
2023
, “
Bearing Current and Shaft Voltage in Electrical Machines: A Comprehensive Research Review
,”
Machines
,
11
(
5
), p.
550
.
2.
He
,
F.
,
Xie
,
G.
, and
Luo
,
J.
,
2020
, “
Electrical Bearing Failures in Electric Vehicles
,”
Friction
,
8
(
1
), pp.
4
28
.
3.
Magdun
,
O.
,
Gemeinder
,
Y.
, and
Binder
,
A.
,
2010
, “
Investigation of Influence of Bearing Load and Bearing Temperature on EDM Bearing Currents
,”
Proceedings of 2010 IEEE Energy Conversion Congress and Exposition
,
Atlanta, GA
,
Sept. 12–16
, pp.
2733
2738
.
4.
Prudhom
,
A.
,
Antonino-Daviu
,
J.
,
Razik
,
H.
, and
Climente-Alarcon
,
V.
,
2017
, “
Time-Frequency Vibration Analysis for the Detection of Motor Damages Caused by Bearing Currents
,”
Mech. Syst. Signal Process.
,
84
(
Part A
), pp.
747
762
.
5.
Xiao
,
Z.
,
Hu
,
M.
,
Chen
,
S.
, and
Cao
,
K.
,
2023
, “
Bearing Electrical-Erosion Damage in Electrical Drive Systems: A Review
,”
IEEE Trans. Transp. Electrification
,
10
(
2
), pp.
3428
3442
.
6.
Mahmoudian
,
M.
,
Gitizadeh
,
M.
,
Rajaei
,
A. H.
, and
Tehrani
,
V. M.
,
2019
, “
Common Mode Voltage Suppression in Three-Phase Voltage Source Inverters With Dynamic Load
,”
IET Power Electron.
,
12
(
12
), pp.
3141
3148
.
7.
ISO
,
2004
,
ISO 15243:2004 Rolling Bearings—Damage and Failures—Terms, Characteristics and Causes
,
The International Organization for Standardization
,
Geneva, Switzerland
.
8.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
,
Khot
,
S. M.
, and
Yelve
,
N. P.
,
2023
, “
A Novel Incipient Fault Detection Technique for Roller Bearing Using Deep Independent Component Analysis and Variational Modal Decomposition
,”
ASME J. Tribol.
,
145
(
7
), p.
074301
.
9.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2016
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.
10.
Plazenet
,
T.
,
Boileau
,
T.
,
Caironi
,
C.
, and
Nahid-Mobarakeh
,
B.
,
2018
, “
A Comprehensive Study on Shaft Voltages and Bearing Currents in Rotating Machines
,”
IEEE Trans. Ind. Appl.
,
54
(
4
), pp.
3749
3759
.
11.
Ahola
,
J.
,
Niskanen
,
V.
, and
Muetze
,
A.
,
2011
, “
On the Role of the Shaft End in the Radio-Frequency Emission of Discharge Bearing Currents in Induction Motors
,”
Proceedings of the 2011 14th European Conference on Power Electronics and Applications
,
Birmingham, UK
,
Aug. 30–Sept. 1
, IEEE, pp.
1
10
.
12.
Ahola
,
J.
,
Särkimäki
,
V.
,
Muetze
,
A.
, and
Tamminen
,
J.
,
2011
, “
Radio-Frequency-Based Detection of Electrical Discharge Machining Bearing Currents
,”
IET Electr. Power Appl.
,
5
(
4
), pp.
386
392
.
13.
Muetze
,
A.
,
Tamminen
,
J.
, and
Ahola
,
J.
,
2011
, “
Influence of Motor Operating Parameters on Discharge Bearing Current Activity
,”
IEEE Trans. Ind. Appl.
,
47
(
4
), pp.
1767
1777
.
14.
Kim
,
M. H.
,
Kim
,
D. G.
,
Kim
,
H.
, and
Lee
,
D. Y.
,
2018
, “
A Study on Electric Erosion of Bearings for EV
,”
Proceedings of Korean Tribology Society
,
Pyeongchang, South Korea
,
Oct. 31–Nov. 2
, p.
44
.
15.
Heo
,
I.
, and
Park
,
J.-Y.
,
2023
, “
Mechanism Analysis of Bearing Electric Erosion According to Voltage
,”
Proceedings of Korean Tribology Society
,
Gyeongju, South Korea
,
Oct. 18–20
, p.
148
.
16.
Prashad
,
H.
,
2002
, “
Diagnosis of Rolling-Element Bearings Failure by Localized Electrical Current Between Track Surfaces of Races and Rolling-Elements
,”
ASME J. Tribol.
,
124
(
3
), pp.
468
473
.
17.
Krein
,
P. T.
,
1996
, “
Electrostatic Discharge Issues in Electric Vehicles
,”
IEEE Trans. Ind. Appl.
,
32
(
6
), pp.
1278
1284
.
18.
Kempski
,
A.
,
2001
, “
Capacitively Coupled Discharging Currents in Bearings of Induction Motor Fed From PWM Inverters
,”
J. Electrostat.
,
51
, pp.
416
423
.
19.
Alcaide
,
A. M.
,
Wang
,
X.
,
Yan
,
H.
,
Leon
,
J. I.
,
Monopoli
,
V. G.
,
Buticchi
,
G.
,
Vazquez
,
S.
,
Liserre
,
M.
, and
Franquelo
,
L. G.
,
2021
, “
Common-Mode Voltage Mitigation of Dual Three-Phase Voltage Source Inverters in a Motor Drive Application
,”
IEEE Access
,
9
, pp.
67477
67487
.
20.
Heino
,
T.
,
2014
, “
Bearing Currents and Their Mitigation in Frequency Converter-Driven Induction Motors
,” B.Eng. thesis, Vaasa University of Applied Sciences, Vaasa, Finland.
21.
Chen
,
S.
,
Lipo
,
T. A.
, and
Fitzgerald
,
D.
,
1996
, “
Source of Induction Motor Bearing Currents Caused by PWM Inverters
,”
IEEE Trans. Energy Convers.
,
11
(
1
), pp.
25
32
.
22.
Arora
,
T. G.
,
Renge
,
M. M.
, and
Aware
,
M. V.
,
2017
, “
Effects of Switching Frequency and Motor Speed on Common Mode Voltage, Common Mode Current and Shaft Voltage in PWM Inverter-Fed Induction Motors
,”
12th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Siem Reap, Cambodia
,
June 18–20
, IEEE, pp.
583
588
.
23.
Loos
,
J.
,
Bergmann
,
I.
, and
Goss
,
M.
,
2021
, “
Influence of High Electrical Currents on WEC Formation in Rolling Bearings
,”
Tribol. Trans.
,
64
(
4
), pp.
708
720
.
24.
Chen
,
S.
, and
Lipo
,
T. A.
,
1998
, “
Circulating Type Motor Bearing Current in Inverter Drives
,”
IEEE Ind. Appl. Mag.
,
4
(
1
), pp.
32
38
.
25.
Erdman
,
J. M.
,
Kerkman
,
R. J.
,
Schlegel
,
D. W.
, and
Skibinski
,
G. L.
,
1996
, “
Effect of PWM Inverters on AC Motor Bearing Currents and Shaft Voltages
,”
IEEE Trans. Ind. Appl.
,
32
(
2
), pp.
250
259
.
26.
Muetze
,
A.
, and
Binder
,
A.
,
2006
, “
Don't Lose Your Bearings
,”
IEEE Ind. Appl. Mag.
,
12
(
4
), pp.
22
31
.
27.
Niskanen
,
V.
,
Muetze
,
A.
, and
Ahola
,
J.
,
2014
, “
Study on Bearing Impedance Properties at Several Hundred Kilohertz for Different Electric Machine Operating Parameters
,”
IEEE Trans. Ind. Appl.
,
50
(
5
), pp.
3438
3447
.
28.
Muetze
,
A.
, and
Binder
,
A.
,
2007
, “
Practical Rules for Assessment of Inverter-Induced Bearing Currents in Inverter-Fed AC Motors up to 500 kW
,”
IEEE Trans. Ind. Electron.
,
54
(
3
), pp.
1614
1622
.
29.
Asefi
,
M.
, and
Nazarzadeh
,
J.
,
2017
, “
Survey on High-Frequency Models of PWM Electric Drives for Shaft Voltage and Bearing Current Analysis
,”
IET Electr. Syst. Transp.
,
7
(
3
), pp.
179
189
.
30.
Maki-Ontto
,
P.
, and
Luomi
,
J.
,
2005
, “
Induction Motor Model for the Analysis of Capacitive and Induced Shaft Voltages
,”
IEEE International Conference on Electric Machines and Drives
,
San Antonio, TX
,
May 15–18
, IEEE, pp.
1653
1660
.
31.
Muetze
,
A.
, and
Binder
,
A.
,
2007
, “
Calculation of Circulating Bearing Currents in Machines of Inverter-Based Drive Systems
,”
IEEE Trans. Ind. Electron.
,
54
(
2
), pp.
932
938
.
32.
Romanenko
,
A.
,
Ahola
,
J.
,
Muetze
,
A.
, and
Niskanen
,
V.
,
2014
, “
Study of Incipient Bearing Damage Monitoring in Variable-Speed Drive Systems
,”
16th European Conference on Power Electronics and Applications
,
Lappeenranta, Finland
,
Aug. 26–28
, IEEE, pp.
1
10
.
33.
Muazzam
,
H.
,
Ishak
,
M. K.
,
Hanif
,
A.
, and
Bhatti
,
A. I.
,
2022
, “
Compensating Thermal Derated Torque of IPMSM Centric Electric Vehicles
,”
IEEE Access
,
10
, pp.
24468
24480
.
34.
El Hadraoui
,
H.
,
Zegrari
,
M.
,
Chebak
,
A.
,
Laayati
,
O.
, and
Guennouni
,
N.
,
2022
, “
A Multi-Criteria Analysis and Trends of Electric Motors for Electric Vehicles
,”
World Electr. Vehicle J.
,
13
(
4
), p.
65
.
35.
Javaid
,
M. U.
,
Seo
,
J.
,
Suh
,
Y. K.
, and
Kim
,
S. Y.
,
2024
, “
Battery State of Health Estimation From Discharge Voltage Segments Using an Artificial Neural Network
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
11
(
3
), pp.
863
876
.
36.
Afzal
,
B.
,
Zhang
,
X.
, and
Srivastava
,
A. K.
,
2022
, “
Enhanced Hybrid Model to Predict the Surface Roughness of Honed Cylinder Bore
,”
ASME J. Tribol.
,
144
(
1
), p.
011201
.
37.
Sunitha
,
L.
,
BalRaju
,
M.
,
Sasikiran
,
J.
, and
Ramana
,
E. V.
,
2014
, “
Automatic Outlier Identification in Data Mining Using IQR in Real-Time Data
,”
Int. J. Adv. Res. Comput. Commun. Eng.
,
3
(
6
), pp.
7255
7257
.
38.
Selvaraj
,
V.
, and
Min
,
S.
,
2023
, “
Real-Time Fault Identification System for a Retrofitted Ultra-Precision CNC Machine From Equipment's Power Consumption Data: A Case Study of an Implementation
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
10
(
4
), pp.
925
941
.
39.
Kim
,
M. H.
, and
Jin
,
K. H.
,
2022
, “
Development of a Deep Learning Algorithm for Anomaly Detection of Manufacturing Facility
,”
J. Korea Inst. Inf. Commun. Eng.
,
26
(
2
), pp.
199
206
.
You do not currently have access to this content.