Abstract

Electromechanically loaded contacts, which have relative motion between the contacting parts, experience severe damage compared to mechanically loaded contacts. The electromechanical environment occurs when different types of current flow through the bearings of traction motors due to the usage of electronic speed control devices. The current passage through the contact depends on the voltage potential developed across the contact. Grease is commonly used as a lubricant, and degradation and evaporation of lubricant due to the joule heating effect are concerns in electromechanical contacts. This study reports the current–voltage–friction characteristics of lithium mineral oil grease using a ball-on-disk configuration under combined electrical and mechanical loading. The characteristics indicated a transition of the lubricated contact from a non-conducting state to a conducting state with increased applied voltage. Two critical voltages are identified: one where the friction is observed to rise and the other where the current flow rapidly increases, leading to accelerated damage to the lubricant by inducing a significantly high temperature. The study helps in identifying permissible voltage levels for operating bearings safely from the perspective of grease lubricant using simplified ball-on-disk experiments.

References

1.
He
,
F.
,
Xie
,
G.
, and
Luo
,
J.
,
2020
, “
Electrical Bearing Failures in Electric Vehicles
,”
Friction
,
8
(
1
), pp.
4
28
.
2.
Esmaeili
,
K.
,
Wang
,
L.
,
Harvey
,
T. J.
,
White
,
N. M.
, and
Holweger
,
W.
,
2022
, “
Electrical Discharges in Oil-Lubricated Rolling Contacts and Their Detection Using Electrostatic Sensing Technique
,”
Sensors
,
22
(
1
), p.
392
.
3.
Zuo
,
X.
,
Xie
,
W.
, and
Zhou
,
Y.
,
2022
, “
Influence of Electric Current on the Wear Topography of Electrical Contact Surfaces
,”
ASME J. Tribol.
,
144
(
7
), p.
071702
.
4.
Zhao
,
H.
,
Wang
,
W.
,
Xu
,
X.
,
Zhong
,
H.
,
Wei
,
D.
, and
Liu
,
X.
,
2024
, “
Understanding Electric Current Effects on Tribological Behaviors of Instantaneous Current-Carrying Pair With Recurrence Plot
,”
ASME J. Tribol.
, pp.
1
26
.
5.
Prashad
,
H.
,
2002
, “
Diagnosis of Rolling-Element Bearings Failure by Localized Electrical Current Between Track Surfaces of Races and Rolling-Elements
,”
ASME J. Tribol.
,
124
(
3
), pp.
468
473
.
6.
Kolbe
,
H.
,
Muetze
,
A.
, and
Hameyer
,
K.
,
2012
, “
Modelling of Impulse Currents in Mechanical Rolling Element Bearings
,”
COMPEL-Int. J Comput. Math. Electr. Electron. Eng.
,
31
(
6
), pp.
1575
1589
.
7.
Didenko
,
T.
, and
Pridemore
,
W. D.
,
2012
, “
Electrical Fluting Failure of a Tri-Lobe Roller Bearing
,”
J. Fail. Anal. Prev.
,
12
(
5
), pp.
575
580
.
8.
Busse
,
D.
,
Erdman
,
J.
,
Kerkman
,
R. J.
,
Schlegel
,
D.
, and
Skibinski
,
G.
,
1997
, “
Bearing Currents and Their Relationship to PWM Drives
,”
IEEE Trans. Power Electron.
,
12
(
2
), pp.
243
252
.
9.
Kempski
,
A.
,
2001
, “
Capacitively Coupled Discharging Currents in Bearings of Induction Motor Fed From PWM (Pulsewidth Modulation) Inverters
,”
J. Electrostat.
,
51–52
, pp.
416
423
.
10.
Xiao
,
Z.
,
Hu
,
M.
,
Chen
,
S.
, and
Cao
,
K.
,
2024
, “
Bearing Electrical-Erosion Damage in Electrical Drive Systems: A Review
,”
IEEE Trans. Transp. Electrific
,
10
(
2)
, pp.
1
1
.
11.
Prashad
,
H.
,
1988
, “
The Effects of Current Leakage on Electroadhesion Forces in Rolling Friction and Magnetic Flux Density Distribution on the Surface of Rolling Element Bearings
,”
ASME J. Tribol.
,
110
(
3
), pp.
448
455
.
12.
Kai
,
N.
,
Chenfei
,
S.
,
Zhihao
,
L.
,
Xianjuan
,
P.
,
Huanhuan
,
L.
,
Sanming
,
D.
, and
Yongzhen
,
Z.
,
2023
, “
Electric Damage of Bearing Under AC Shaft Voltage at Different Rotation Speeds
,”
Tribol. Int.
,
177
, p.
108008
.
13.
Farfan-Cabrera
,
L. I.
,
Erdemir
,
A.
,
Cao-Romero-Gallegos
,
J. A.
,
Alam
,
I.
, and
Lee
,
S.
,
2023
, “
Electrification Effects on Dry and Lubricated Sliding Wear of Bearing Steel Interfaces
,”
Wear
,
516–517
, p.
204592
.
14.
Gonda
,
A.
,
Capan
,
R.
,
Bechev
,
D.
, and
Sauer
,
B.
,
2019
, “
The Influence of Lubricant Conductivity on Bearing Currents in the Case of Rolling Bearing Greases
,”
Lubricants
,
7
(
12
), p.
108
.
15.
Joshi
,
A.
,
2019
, “Electrical Characterisations of Bearings,”
Ph.D. thesis
,
Chalmers University of Technology
,
Gothenburg, Sweden
. https://research.chalmers.se/publication/508930/file/508930_Fulltext.pdf
16.
Noguchi
,
S.
,
Kakinuma
,
S.
, and
Kanada
,
T.
,
2010
, “
Measurement of Direct Current Voltage Causing Electrical Pitting
,”
J. Adv. Mech. Des. Syst. Manuf.
,
4
(
6
), pp.
1084
1094
.
17.
Sanchez Garrido,
,
D.
,
Leventini
,
S.
, and
Martini
,
A.
,
2021
, “
Effect of Temperature and Surface Roughness on the Tribological Behavior of Electric Motor Greases for Hybrid Bearing Materials
,”
Lubricants
,
9
(
6
), p.
59
.
18.
Cao-Romero-Gallegos
,
J. A.
,
Farfan-Cabrera
,
L. I.
,
Erdemir
,
A.
, and
Pascual-Francisco
,
J. B.
,
2023
, “
Lubricated Sliding Wear of Gear Material Under Electrification – A New Approach to Understanding of the Influence of Shaft Currents in the Wear of EV Transmissions
,”
Wear
,
523
, p.
204782
.
19.
Calderon Salmeron
,
G.
,
Leckner
,
J.
,
Schwack
,
F.
,
Westbroek
,
R.
, and
Glavatskih
,
S.
,
2022
, “
Greases for Electric Vehicle Motors: Thickener Effect and Energy Saving Potential
,”
Tribol. Int.
,
167
, p.
107400
.
20.
Bond
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2024
, “
The Influence of Various Grease Compositions and Silver Nanoparticle Additives on Electrically Induced Rolling-Element Bearing Damage
,”
Friction
,
12
(
4
), pp.
796
811
.
21.
Shah
,
R.
,
Tung
,
S.
,
Chen
,
R.
, and
Miller
,
R.
,
2021
, “
Grease Performance Requirements and Future Perspectives for Electric and Hybrid Vehicle Applications
,”
Lubricants
,
9
(
4
), p.
40
.
22.
Romanenko
,
A.
,
Muetze
,
A.
, and
Ahola
,
J.
,
2016
, “
Effects of Electrostatic Discharges on Bearing Grease Dielectric Strength and Composition
,”
IEEE Trans. Ind. Appl.
,
52
(
6
), pp.
4835
4842
.
23.
Costabile
,
G.
,
De Vivo
,
B.
,
Egiziano
,
L.
,
Lamberti
,
P.
, and
Tucci
,
V.
,
2007
, “
Performances of Dielectric Greases for Rolling Bearings Employed in High Power Induction Motors Fed by PWM Inverters
,”
Proceedings of the 2007 Annual Report – Conference on Electrical Insulation and Dielectric Phenomena
,
Vancouver, BC, Canada
,
Oct. 14–17
, IEEE, pp.
45
48
.
24.
Sunahara
,
K.
,
Yamashita
,
S.
,
Yamamoto
,
M.
,
Ikeda
,
M.
,
Nishikawa
,
H.
,
Matsuda
,
K.
, and
Kaneta
,
M.
,
2008
, “
Development of Grease Film Breakdown Observing Device
,”
Tribol. Online
,
3
(
2
), pp.
40
43
.
25.
Martin
,
G.
,
Becker
,
F. M.
, and
Kirchner
,
E.
,
2022
, “
A Novel Method for Diagnosing Rolling Bearing Surface Damage by Electric Impedance Analysis
,”
Tribol. Int.
,
170
, p.
107503
.
26.
Gonda
,
A.
,
Paulus
,
S.
,
Graf
,
S.
,
Koch
,
O.
,
Götz
,
S.
, and
Sauer
,
B.
,
2024
, “
Basic Experimental and Numerical Investigations to Improve the Modeling of the Electrical Capacitance of Rolling Bearings
,”
Tribol. Int.
,
193
, p.
109354
.
27.
Schneider
,
V.
,
Behrendt
,
C.
,
Höltje
,
P.
,
Cornel
,
D.
,
Becker-Dombrowsky
,
F. M.
,
Puchtler
,
S.
,
Gutiérrez Guzmán
,
F.
,
Ponick
,
B.
,
Jacobs
,
G.
, and
Kirchner
,
E.
,
2022
, “
Electrical Bearing Damage, a Problem in the Nano- and Macro-Range
,”
Lubricants
,
10
(
8
), p.
194
.
28.
Slade
,
P. G.
,
2017
,
Electrical Contacts: Principles and Applications
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
29.
Li
,
Z.
,
Guo
,
F.
,
Jing
,
Z.
,
Li
,
B.
,
Zhang
,
L.
, and
Wang
,
X.
,
2024
, “
Study on Electric Erosion in Grease Lubrication Using Optical Interference Method
,”
Tribol. Int.
,
195
, p.
109596
.
30.
Li
,
Z.
,
Guo
,
F.
,
Jing
,
Z.
,
Li
,
B.
,
Zhang
,
L.
, and
Wang
,
X.
,
2024
, “
Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields
,”
Lubricants
,
12
(
3
), p.
79
.
31.
Schnabel
,
S.
,
Marklund
,
P.
,
Minami
,
I.
, and
Larsson
,
R.
,
2016
, “
Monitoring of Running-In of an EHL Contact Using Contact Impedance
,”
Tribol. Lett.
,
63
(
3
), p.
35
.
32.
Cao-Romero-Gallegos
,
J. A.
,
Taghizadeh
,
S.
,
Aguilar-Rosas
,
O. A.
,
Dwyer-Joyce
,
R. S.
, and
Farfan-Cabrera
,
L. I.
,
2024
, “
The Effect of Electrical Current on Lubricant Film Thickness in Boundary and Mixed Lubrication Contacts Measured With Ultrasound
,”
Friction
,
12
(
8
), pp.
1882
1896
.
33.
Balakrishna
,
G. V.
, and
Gnanamoorthy
,
R.
,
2024
, “
Prediction of Temperature Rise in Ball-On-Disk Contacts Under Electromechanical Loading
,”
Tribol. Int.
,
194
, p.
109476
.
34.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
35.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
36.
G02 Committee
,
2017
,
Test Method for Wear Testing With a Pin-on-Disk Apparatus
,
ASTM International
,
West Conshohocken, PA
.
37.
Xu
,
N.
,
Wang
,
X.
,
Ma
,
R.
,
Li
,
W.
, and
Zhang
,
M.
,
2018
, “
Insights Into the Rheological Behaviors and Tribological Performances of Lubricating Grease: Entangled Structure of a Fiber Thickener and Functional Groups of a Base Oil
,”
New J. Chem.
,
42
(
2
), pp.
1484
1491
.
38.
Zhang
,
E.
,
Li
,
W.
,
Zhao
,
G.
,
Wang
,
Z.
, and
Wang
,
X.
,
2021
, “
A Study on Microstructure, Friction and Rheology of Four Lithium Greases Formulated With Four Different Base Oils
,”
Tribol. Lett.
,
69
(
3
), p.
98
.
39.
Gonçalves
,
D.
,
Vieira
,
A.
,
Carneiro
,
A.
,
Campos
,
A.
, and
Seabra
,
J.
,
2017
, “
Film Thickness and Friction Relationship in Grease Lubricated Rough Contacts
,”
Lubricants
,
5
(
3
), p.
34
.
40.
Zhang
,
S.
,
Klinghart
,
B.
,
Jacobs
,
G.
,
Von Goeldel
,
S.
, and
König
,
F.
,
2024
, “
Prediction of Bleeding Behavior and Film Thickness Evolution in Grease Lubricated Rolling Contacts
,”
Tribol. Int.
,
193
, p.
109369
.
41.
Hua
,
X.
,
Puoza
,
J.
,
Zhang
,
P.
,
Xie
,
X.
, and
Yin
,
B.
,
2017
, “
Experimental Analysis of Grease Friction Properties on Sliding Textured Surfaces
,”
Lubricants
,
5
(
4
), p.
42
.
42.
Noguchi
,
S.
,
Korenaga
,
A.
, and
Kanada
,
T.
,
2010
, “
Occurrence Condition of Electric Current Density in Electrical Pitting: (In Case of Ball Bearing 608 for Application of Direct Current)
,”
J. Adv. Mech. Des. Syst. Manuf.
,
4
(
2
), pp.
469
479
.
43.
Rouabeh
,
J.
,
M’barki
,
L.
,
Hammami
,
A.
,
Jallouli
,
I.
, and
Driss
,
A.
,
2019
, “
Studies of Different Types of Insulating Oils and Their Mixtures as an Alternative to Mineral Oil for Cooling Power Transformers
,”
Heliyon
,
5
(
3
), p.
e01159
.
44.
Jackson
,
R. L.
, and
Angadi
,
S.
,
2023
, “
Electrical Contact During a Rolling Vibratory Motion Considering Mixed Lubrication
,”
ASME J. Tribol.
,
145
(
8
), p.
082201
.
45.
Morris
,
S. A.
,
Leighton
,
M.
, and
Morris
,
N. J.
,
2022
, “
Electrical Field Strength in Rough Infinite Line Contact Elastohydrodynamic Conjunctions
,”
Lubricants
,
10
(
5
), p.
87
.
46.
Chiou
,
Y.-C.
,
Lee
,
R.-T.
, and
Lin
,
S.-M.
,
2009
, “
Formation Mechanism of Electrical Damage on Sliding Lubricated Contacts for Steel Pair Under DC Electric Field
,”
Wear
,
266
(
1–2
), pp.
110
118
.
47.
Xie
,
G. X.
,
Luo
,
J. B.
,
Liu
,
S. H.
,
Guo
,
D.
,
Li
,
G.
, and
Zhang
,
C. H.
,
2009
, “
Effect of Liquid Properties on the Growth and Motion Characteristics of Micro-Bubbles Induced by Electric Fields in Confined Liquid Films
,”
J. Phys. D: Appl. Phys
,
42
(
11
), p.
115502
.
48.
Huang
,
L.
,
Guo
,
D.
, and
Shizhu
,
W.
,
2016
, “
Film Thickness Decay and Replenishment in Point Contact Lubricated With Different Greases: A Study Into Oil Bleeding and the Evolution of Lubricant Reservoir
,”
Tribol. Int.
,
93
, pp.
620
627
.
49.
Muetze
,
A.
,
2004
, “Bearing Currents in Inverter-Fed AC-Motors,”
Doctor of Engineering Dissertation
,
TU Darmstadt
,
Darmstadt, Germany
. https://www.ew.tu-darmstadt.de/media/ew/rd/ew_dissertationen/dissannette.pdf
50.
Rhee
,
I.-S.
,
2007
, “
Decomposition Kinetic of Greases by Thermal Analysis
,”
Proceedings of the 74th NLGI Annual Meeting
,
Scottsdale, AZ
,
June 9–12
, pp.
221
232
.
You do not currently have access to this content.