Abstract

Utilizing computer technology to realize the application of ferrographic intelligent fault diagnosis technology is a foundational investigation to oversee the operations of mechanical equipment. To continuously improve the accuracy of artificial intelligence recognition, the complexity and computation of the model will be increased. The proposal of the transformer model (the core technology of chatgpt) has fundamentally changed the intelligence level of artificial intelligence, but it has also greatly increased the demand for computer computing power. What's more, it is difficult to equip industrial quality inspection sites with high computing power computers. The channel overlapping technique developed in this paper is a technology to segment the three channels of image information and reserve overlapping areas for an information communication mechanism. With this mechanism, the model location channel overlapping convolutional neural network can obtain high recognition accuracy by using only one-half of the original training computing power. When channel overlapping combines with no position information, information fusion is formed. The model channel overlapping technique fusion convolutional neural network established by the information fusion mechanism will get a higher prediction accuracy through joint training with the original image. However, the computation consumption is nearly one-third of the pure traditional convolutional neural network algorithm.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Peng
,
Z.
, and
Kessissoglou
,
N.
,
2003
, “
An Integrated Approach to Fault Diagnosis of Machinery Using Wear Debris and Vibration Analysis
,”
Wear
,
255
(
7–12
), pp.
1221
1232
.
2.
Peng
,
Z.
, and
Goodwin
,
S.
,
2001
, “
The Development of an Expert System for Wear Debris Analysis
,”
DSTO International Conference on Health and Usage Monitoring
,
Melbourne, Australia
,
Feb. 19–20
, p.
5
.
3.
Peng
,
Z.
, and
Kirk
,
T. B.
,
1999
, “
Wear Particle Classification in a Fuzzy Grey System
,”
Wear
,
225–229
, pp.
1238
1247
.
4.
Peng
,
Y.
,
Cai
,
J.
,
Wu
,
T.
,
Cao
,
G.
,
Kwok
,
N.
,
Zhou
,
S.
, and
Peng
,
Z.
,
2019
, “
Online Wear Characterisation of Rolling Element Bearing Using Wear Particle Morphological Features
,”
Wear
,
430–431
, pp.
369
375
.
5.
El-Thalji
,
I.
, and
Jantunen
,
E.
,
2015
, “
Dynamic Modelling of Wear Evolution in Rolling Bearings
,”
Tribol. Int.
,
84
, pp.
90
99
.
6.
Peng
,
Y.
,
Wu
,
T.
,
Wang
,
S.
, and
Peng
,
Z.
,
2017
, “
Wear State Identification Using Dynamic Features of Wear Debris for On-Line Purpose
,”
Wear
,
376–377
, pp.
1885
1891
.
7.
Li
,
S.-X.
,
Su
,
Y.-S.
,
Shu
,
X.-D.
, and
Chen
,
J.-J.
,
2017
, “
Microstructural Evolution in Bearing Steel Under Tolling Contact Fatigue
,”
Wear
,
380–381
, pp.
146
153
.
8.
Song
,
J.
,
Chen
,
F.
,
Liu
,
Y.
,
Wang
,
S.
,
He
,
X.
,
Liao
,
Z.
,
Mu
,
X.
,
Yang
,
M.
,
Liu
,
W.
, and
Peng
,
Z.
,
2020
, “
Insight Into the Wear Particles of PEEK and CFRPEEK Against UHMWPE for Artificial Cervical Disc Application: Morphology and Immunoreaction
,”
Tribol. Int.
,
144
, p.
106093
.
9.
Wang
,
S.
,
Wu
,
T.
,
Yang
,
L.
,
Kwok
,
N.
, and
Sarkodie-Gyan
,
T.
,
2019
, “
Three-Dimensional Reconstruction of Wear Particle Surface Based on Photometric Stereo
,”
Measurement
,
133
, pp.
350
360
.
10.
Wang
,
M.
, and
Peng
,
Z.
,
2019
, “
3D Characterisation of Surface Topographies of Wear Debris Collected From Human Knees for Osteoarthritis Study
,”
Tribol. Int.
,
136
, pp.
524
532
.
11.
Peng
,
P.
, and
Wang
,
J. G.
,
2019
, “
FECNN: A Promising Model for Wear Particle Recognition
,”
Wear
,
432–433
, p.
202968
.
12.
Wang
,
S.
,
Wu
,
T. H.
,
Zheng
,
P.
, and
Kwok
,
N.
,
2020
, “
Optimized CNN Model for Identifying Similar 3D Wear Particles in Few Samples
,”
Wear
,
460–461
, p.
203477
.
13.
Peng
,
Y. P.
,
Cai
,
J. H.
,
Wu
,
T. H.
,
Cao
,
G.
,
Kwok
,
N.
,
Zhou
,
S.
, and
Peng
,
Z.
,
2019
, “
A Hybrid Convolutional Neural Network for Intelligent Wear Particle Classification
,”
Tribol. Int.
,
138
, pp.
166
173
.
14.
Pang
,
J. S.
,
Chen
,
Y. M.
,
He
,
S. Z.
,
Qiu
,
H. H.
,
Wu
,
C.
, and
Mao
,
L. B.
,
2021
, “
Classification of Friction and Wear State of Wind Turbine Gearboxes Using Decision Tree and Random Forest Algorithms
,”
ASME J. Tribol.
,
143
(
9
), p.
091702
.
15.
Xie
,
F.
, and
Wei
,
H. J.
,
2022
, “
Research on Controllable Deep Learning of Multi-channel Image Coding Technology in Ferrographic Image Fault Classification
,”
Tribol. Int.
,
173
, p.
107656
.
16.
Wang
,
S.
,
Shao
,
T.
,
Wu
,
T. H.
,
Thompson
,
S. G.
, and
Lei
,
Y. G.
,
2023
, “
Knowledge-Guided Convolutional Neural Network Model for Similar Three-Dimensional Wear Debris Identification With Small Number of Samples
,”
ASME J. Tribol.
,
145
(
9
), p.
091105
.
17.
Zhu
,
Y.
,
Yuan
,
Z. J.
,
Michael
,
M. K.
,
Zhao
,
S. M.
, and
Yang
,
H. Y.
,
2023
, “
Small-Dataset Machine Learning for Wear Prediction of Laser Powder Bed Fusion Fabricated Steel
,”
ASME J. Tribol.
,
145
(
9
), p.
091101
.
18.
Ajaz
,
A. D.
,
Koshlendra
,
D.
, and
Chandra
,
S. Y.
,
2022
, “
Predicting the Erosion Rate of Uni-Directional Glass Fiber Reinforced Polymer Composites Using Machine-Learning Algorithms
,”
ASME J. Tribol.
,
144
(
9
), p.
091707
.
19.
Alves
,
D. S.
,
Machado
,
T. H.
,
da Silva Tuckmantel
,
F. W.
,
Keogh
,
P. S.
, and
Cavalca
,
K. L.
,
2022
, “
Investigation of Fault Modeling in the Identification of Bearing Wear Severity
,”
ASME J. Tribol.
,
144
(
7
), p.
071802
.
20.
Liu
,
Z.
,
Lin
,
Y. T.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y. X.
,
Zhang
,
Z.
,
Lin
,
S.
, and
Guo
,
B. N.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
,
Online
,
Oct. 11–17
.
21.
Yuan
,
L.
,
Hou
,
Q. B.
,
Jiang
,
Z. H.
,
Feng
,
J. S.
, and
Yan
,
S. C.
,
2023
, “
VOLO: Vision Outlooker for Visual Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
5
), pp.
6575
6586
.
22.
Dong
,
X. Y.
,
Bao
,
J. M.
,
Chen
,
D. D.
,
Zhang
,
W. M.
,
Yu
,
N. H.
,
Yuan
,
L.
,
Chen
,
D.
, and
Guo
,
B.
,
2022
, “
CSWin Transformer: A General Vision Transformer Backbone With Cross-Shaped Windows
,”
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
New Orleans, LA
,
June 19–24
.
23.
Hugo
,
T.
,
Matthieu
,
C.
,
Alexandre
,
S.
,
Gabriel
,
S.
, and
Hervé
,
J.
,
2021
, “
Going Deeper With Image Transformers
,”
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
,
Online
,
Oct. 11–17
.
24.
Wang
,
W. H.
,
Xie
,
E. Z.
,
Li
,
X.
,
Fan
,
D. P.
,
Song
,
K. T.
,
Liang
,
D.
,
Lu
,
T.
,
Luo
,
P.
, and
Shao
,
L.
,
2022
, “
PVTv2: Improved Baselines With Pyramid Vision Transformer
,”
Computational Visual Media
,
8
(
3
), pp.
415
424
.
25.
Huang
,
Z. L.
,
Ben
,
Y. C.
,
Luo
,
G. Z.
,
Cheng
,
P.
,
Yu
,
G.
, and
Fu
,
B.
,
2023
, “
Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer
,”
2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII)
,
Sapporo, Hokkaido, Japan
,
Aug. 11
.
You do not currently have access to this content.