Abstract

The bearing cage played a pivotal role in affecting the lubricant redistribution and lubrication states. In this study, a cage unit is incorporated into an optical ball-on-disc apparatus for the purpose of a quantitative study of cage-induced lubrication phenomena. It is found that the presence of the lubricant layer on the ball surface, shaped by the cage, affects the inlet lubricant supply of contact between the ball and the glass disc. Thereafter, the oil reservoirs surrounding the contact area and the film thickness were measured. The results showed that the lubricant reservoirs and inlet lubricant supplement were significantly improved with the employment of the cages. In addition, the lubrication state transformed from starved to fully flooded, effectively enhancing the lubrication state. Moreover, the lubricant on the steel ball surface moved from the side bands to the central rolling track, indicating that the lubricant redistribution was the main reason for the lubricating enhancement. Notably, the groove modification on the inner surface of the cage pocket facilitated the directional lubricant migration and the migration effect depended on the groove angles. In conclusion, these results offer an in-depth understanding of the bearing lubrication mechanism, thereby inspiring advancements in cage design and lubricant flow regulation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hamrock
,
B.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elasto-Hydrodynamic Lubrication of Point Contacts, Part 3-Fully Flooded Results
,”
ASME J. Tribol.
,
99
(
2
), pp.
264
275
.
2.
Chevalier
,
F.
,
Lubrecht
,
A.
,
Cann
,
P.
,
Colin
,
F.
, and
Dalmaz
,
G.
,
1998
, “
Film Thickness in Starved EHL Point Contacts
,”
ASME J. Tribol.
,
120
(
1
), pp.
126
133
.
3.
Li
,
X.
,
Guo
,
F.
,
Poll
,
G.
,
Fei
,
Y.
, and
Yang
,
P.
,
2021
, “
Grease Film Evolution in Rolling Elastohydrodynamic Lubrication Contacts
,”
Friction
,
9
(
1
), pp.
179
190
.
4.
Wedeven
,
L.
,
Evans
,
D.
, and
Cameron
,
A.
,
1971
, “
Optical Analysis of Ball Bearing Starvation
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
349
361
.
5.
Chiu
,
Y.
,
1973
, “
An Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems
,”
ASLE Trans.
,
17
(
1
), pp.
22
35
.
6.
Qian
,
H.
,
Guo
,
D.
,
Liu
,
S.
, and
Lu
,
X.
,
2012
, “
Experimental Investigation of Lubricant Flow Properties Under Micro oil Supply Condition
,”
ASME J. Tribol.
,
134
(
4
), p.
041501
.
7.
Jacod
,
B.
,
Pubilier
,
F.
,
Cann
,
P.
, and
Lubrecht
,
A.
,
1999
, “
An Analysis of Track Replenishment Mechanisms in the Starved Regime
,”
Lubr. Front.
,
36
, pp.
483
492
.
8.
Pemberton
,
J.
, and
Cameron
,
A.
,
1976
, “
A Mechanism of Fluid Replenishment in Elastohydrodynamic Contacts
,”
Wear
,
37
(
1
), pp.
185
190
.
9.
Cann
,
P.
,
Damiens
,
B.
, and
Lubrecht
,
A.
,
2004
, “
The Transition Between Fully Flooded and Starved Regimes in EHL
,”
Tribol. Int.
,
37
(
10
), pp.
859
864
.
10.
Liang
,
H.
,
Guo
,
D.
, and
Luo
,
J.
,
2014
, “
Experimental Investigation of Lubrication Film Starvation of Polyalphaolefin Oil at High Speeds
,”
Tribol. Lett.
,
56
(
3
), pp.
491
500
.
11.
Liang
,
H.
,
Guo
,
D.
, and
Luo
,
J.
,
2018
, “
Film Forming Behavior in Thin Film Lubrication at High Speeds
,”
Friction
,
6
(
12
), pp.
156
163
.
12.
Gao
,
M.
,
Liang
,
H.
,
Wang
,
W.
, and
Chen
,
H.
,
2022
, “
Oil Redistribution and Replenishment on Stationary Bearing Inner Raceway
,”
Tribol. Int.
,
165
(
16
), p.
107315
.
13.
Liu
,
C.
,
Guo
,
F.
,
Wong
,
P.
, and
Li
,
X.
,
2022
, “
Laser Pattern-Induced Unidirectional Lubricant Flow for Lubrication Track Replenishment
,”
Friction
,
10
(
8
), pp.
1234
1244
.
14.
Wu
,
C.
,
Yang
,
K.
,
Ni
,
J.
,
Lu
,
S.
,
Yao
,
L.
, and
Li
,
X.
,
2022
, “
Investigations for Vibration and Friction Torque Behaviors of Thrust Ball Bearing With Self-Driven Textured Guiding Surface
,”
Friction
,
11
(
6
), pp.
894
910
.
15.
Van der Kruk
,
M. M.
,
Smit
,
S.
, and
Segers
,
T.
,
2019
, “
Drop-on-Demand Printing as Novel Method of Oil Supply in Elastohydrodynamic Lubrication
,”
Tribol. Lett.
,
67
(
3
), pp.
1
12
.
16.
Liang
,
H.
,
Guo
,
D.
,
Ma
,
L.
, and
Luo
,
J.
,
2015
, “
Experimental Investigation of Centrifugal Effects on Lubricant Replenishment in the Starved Regime at High Speeds
,”
Tribol. Lett.
,
59
(
1
), pp.
1
9
.
17.
Zeng
,
Q.
,
Liu
,
C.
, and
Zhang
,
J.
,
2015
, “
Application Status and Study of Oil-Air Lubrication System for High Speed Rolling Bearing
,”
Lubr. Eng
,
40
(
3
), pp.
103
108
.
18.
Yan
,
B.
,
Dong
,
L.
,
Yan
,
K.
,
Chen
,
F.
,
Zhu
,
Y.
, and
Wang
,
D.
,
2021
, “
Effects of Oil-Air Lubrication Methods on the Internal Fluid Flow and Heat Dissipation of High-Speed Ball Bearings
,”
Mech. Syst. Signal Process.
,
151
(
3
), p.
107409
.
19.
Maruyama
,
T.
, and
Saitoh
,
T.
,
2010
, “
Oil Film Behavior Under Minute Vibrating Conditions in EHL Point Contacts
,”
Tribol. Int.
,
43
(
8
), pp.
1279
1286
.
20.
Glovnea
,
R.
, and
Zhang
,
X.
,
2018
, “
Elastohydrodynamic Films Under Periodic Load Variation: an Experimental and Theoretical Approach
,”
Tribol. Lett.
,
66
(
3
), pp.
94
105
.
21.
Porras-Vázquez
,
A.
,
Fillot
,
N.
,
Vergne
,
P.
,
Philippon
,
D.
, and
Morales-Espejel
,
G.
,
2021
, “
Influence of Spin on Film Thickness in Elastohydrodynamic Starved Point Contacts
,”
Tribol. Int.
,
156
(
13
), p.
106825
.
22.
Sperka
,
P.
,
Wang
,
J.
,
Krupka
,
I.
,
Hartl
,
M.
, and
Kaneta
,
M.
,
2014
, “
Occurrence of High Pressure Spike in Unidirectional Start–Stop–Start Point Contacts
,”
ASME J. Tribol
,
136
(
4
), p.
041503
.
23.
Zhang
,
Y.
,
Wang
,
W.
,
Zhang
,
S.
, and
Zhao
,
Z.
,
2016
, “
Optical Analysis of Ball-on-Ring Mode Test Rig for Oil Film Thickness Measurement
,”
Friction
,
4
(
4
), pp.
324
334
.
24.
Kostal
,
D.
,
Okal
,
M.
,
Fryza
,
J.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2022
, “
Novel In-Situ Observation of the Grease Constituents in Elastohydrodynamic Contacts by Fluorescence Microscopy
,”
Tribol. Lett.
,
70
(
4
), pp.
1
15
.
25.
Damiens
,
B.
,
Lubrecht
,
A.
, and
Cann
,
P.
,
2004
, “
Influence of Cage Clearance on Bearing Lubrication
,”
Tribol. Trans.
,
47
(
1
), pp.
2
6
.
26.
Liang
,
H.
,
Zhang
,
Y.
, and
Wang
,
W.
,
2021
, “
Influence of the Cage on the Migration and Distribution of Lubricating Oil Inside a Ball Bearing
,”
Friction
,
10
(
3
), pp.
1
11
.
27.
Arya
,
U.
,
Sadeghi
,
F.
,
Aamer
,
S.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2023
, “
In Situ Visualization and Analysis of Starvation in Ball Bearing Cages
,”
Tribol. Trans.
,
66
(
5
), pp.
1
36
.
28.
Wen
,
B.
,
Li
,
Y.
,
Wang
,
M.
, and
Yang
,
Y.
,
2023
, “
Measurement for Lubricant Distribution in an Angular Contact Ball Bearing and its Influence Investigation
,”
Lubricants
,
11
(
2
), pp.
63
74
.
29.
Russell
,
T.
, and
Sadeghi
,
F.
,
2022
, “
The Effects of Lubricant Starvation on Ball Bearing Cage Pocket Friction
,”
Tribol. Int.
,
173
(
13
), p.
107630
.
30.
Russell
,
T.
,
Sadeghi
,
F.
,
Kang
,
Y.
, and
Mazzitelli
,
I.
,
2024
, “
The Influence of Cage Pocket Lubrication on the Simulation of Deep Groove Ball Bearing Cage Motion
,”
ASME J. Tribol.
,
146
(
2
), p.
022201
.
31.
Arya
,
U.
,
Sadeghi
,
F.
,
Conley
,
B.
,
Russell
,
T.
,
Peterson
,
W.
, and
Meinel
,
A.
,
2022
, “
Experimental Investigation of Cage Dynamics and Ball-Cage Contact Forces in an Angular Contact Ball Bearing
,”
Proc. Inst. Mech. Eng. J.-J. Eng.
,
236
(
12
), pp.
2522
2534
.
32.
Russell
,
T.
,
Sadeghi
,
F.
,
Peterson
,
W.
,
Aamer
,
S.
, and
Arya
,
U.
,
2021
, “
A Novel Test Rig for the Investigation of Ball Bearing Cage Friction
,”
Tribol. Trans.
,
64
(
1
), pp.
1
15
.
33.
Chen
,
H.
,
Liang
,
H.
,
Wang
,
W.
, and
Zhang
,
S.
,
2023
, “
Investigation on the Oil Transfer Behaviors and the Air-Oil Interfacial Flow Patterns in a Ball Bearing Under Different Capillary Conditions
,”
Friction
,
11
(
2
), pp.
228
245
.
34.
Zhang
,
S.
,
Jacobs
,
G.
,
von Goeldel
,
S.
,
Vafaei
,
S.
, and
König
,
F.
,
2022
, “
Prediction of Film Thickness in Starved EHL Point Contacts Using Two-Phase Flow CFD Model
,”
Tribol. Int.
,
178
(
4
), p.
108103
.
35.
Fischer
,
D.
,
Goeldel
,
S.
,
Jacobs
,
G.
,
Stratmann
,
A.
, and
Köenig
,
F.
,
2021
, “
Investigation of Lubricant Supply in Rolling Point Contacts Under Starved Conditions Using CFD Simulations
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1097
(
1
), p.
12007
.
36.
Fischer
,
D.
,
von Goeldel
,
S.
,
Jacobs
,
G.
, and
Stratmann
,
A.
,
2021
, “
Numerical Investigation of Effects on Replenishment in Rolling Point Contacts Using CFD Simulations
,”
Tribol. Int.
,
157
(
2
), p.
106858
.
37.
Liu
,
H.
,
Guo
,
F.
,
Guo
,
L.
, and
Wong
,
P.
,
2015
, “
A Dichromatic Interference Intensity Modulation Approach to Measurement of Lubricating Film Thickness
,”
Tribol. Lett.
,
58
(
1
), pp.
15
25
.
38.
Guo
,
F.
,
Zang
,
S.
,
Li
,
C.
,
Wang
,
P.
, and
Guo
,
L.
,
2018
, “
Lubrication Film Generation in Slider-on-Disc Contact Under Limited Lubricant Supply
,”
Tribol. Int.
,
125
, pp.
200
208
.
39.
Aamer
,
S.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Peterson
,
W.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2022
, “
Lubrication, Flow Visualization, and Multiphase CFD Modeling of Ball Bearing Cage
,”
Tribol. Trans.
,
65
(
6
), pp.
1088
1098
.
40.
Jin
,
X.
,
Li
,
X.
,
Chen
,
Q.
,
Yang
,
P.
,
Guo
,
F.
, and
Jiang
,
N.
,
2022
, “
Observation of Grease Film Behavior in Sliding-Rolling Concentrated Contacts
,”
ASME J. Tribol.
,
144
(
1
), p.
011602
.
You do not currently have access to this content.