Abstract

Despite many researches in the past decades, starvation modeling of an elastohydrodynamic lubricated (EHL) contact is still an arduous task. The well-established Jackobson, Floberg, and Olsson (JFO) theory indeed shows jump discontinuities that are tricky to consider in a numerical solver. Two strategies are discussed in this article. The first one uses a penalty method, while the second one uses a moving mesh method. Their efficiency are compared to reference cases coming from the literature. Then, they are submitted to a transient analysis where the oil inlet layer decreases suddenly.

References

1.
Hamrock
,
B.
,
Schmid
,
S.
, and
Jacobson
,
B.
,
2004
,
Fundamentals of Fluid Film Lubrication
(
Mechanical Engineering Series
),
CRC Press
,
Boca Raton, FL
.
2.
Floberg
,
L.
,
1974
, “
Cavitation Boundary Conditions With Regard to the Number of Streamers and Tensile Strength of the Liquid
,”
Proceeding of the 1st Leeds-Lyon Symposium on Tribology
,
Leeds, UK
,
September
, pp.
31
36
.
3.
Elrod
,
H. G.
, and
Adams
,
M.
,
1974
, “
A Computer Program for Cavitation and Starvation Problems
,” Cavitation and Related Phenomena in Lubrication, Proceeding of the 1st Leeds-Lyon Symposium on Tribology,
Leeds, UK
,
September
, pp.
37
41
.
4.
Bayada
,
G.
,
Chambat
,
M.
, and
El Alaoui
,
M.
,
1990
, “
Variational Formulations and Finite Element Algorithms for Cavitation Problems
,”
ASME J. Tribol.
,
112
(
2
), pp.
398
403
.
5.
Biboulet
,
N.
, and
Lubrecht
,
A.
,
2018
, “
Efficient Solver Implementation for Reynolds Equation With Mass-Conserving Cavitation
,”
Tribol. Int.
,
118
, pp.
295
300
.
6.
Chevalier
,
F.
,
Lubrecht
,
A. A.
,
Cann
,
P. M. E.
,
Colin
,
F.
, and
Dalmaz
,
G.
,
1998
, “
Film Thickness in Starved EHL Point Contacts
,”
ASME J. Tribol.
,
120
(
1
), pp.
126
133
.
7.
Damiens
,
B.
,
2003
, “
Modélisation de la lubrification sous-alimentée dans les contacts élastohydrodynamiques elliptiques
,” Ph.D. thesis,
INSA de Lyon
,
Villeurbanne, France
.
8.
Wijnant
,
Y.
,
1998
, “
Contact Dynamics in the Field of Elastohydrodynamic Lubrication
,”
Ph.D. thesis, University of Twente, Netherlands.
9.
Popovici
,
G.
,
2005
, “
Effects of Lubricant Starvation on Performance of Elasto-Hydrodynamically Lubricated Contacts
,”
Ph.D. thesis, University of Twente, Netherlands.
10.
van Zoelen
,
M.
,
2009
, “
Thin Layer Flow in Rolling Element Bearings
,”
Ph.D. thesis, University of Twente, Netherlands.
11.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), p.
041702
.
12.
van Emden
,
E.
,
Venner
,
C.
, and
Morales-Espejel
,
G.
,
2016
, “
A Challenge to Cavitation Modeling in the Outlet Flow of an EHL Contact
,”
Tribol. Int.
,
102
, pp.
275
286
.
13.
Porras-Vazquez
,
A.
,
Fillot
,
N.
,
Vergne
,
P.
,
Philippon
,
D.
, and
Morales-Espejel
,
G.
,
2021
, “
Influence of Spin on Film Thickness in Elastohydrodynamic Starved Point Contacts
,”
Tribol. Int.
,
156
, p.
106825
.
14.
Marian
,
M.
,
Grützmacher
,
P.
,
Rosenkranz
,
A.
,
Tremmel
,
S.
,
Mücklich
,
F.
, and
Wartzack
,
S.
,
2019
, “
Designing Surface Textures for EHL Point-Contacts-Transient 3D Simulations, Meta-Modeling and Experimental Validation
,”
Tribol. Int.
,
137
, pp.
152
163
.
15.
Habchi
,
W.
,
2018
,
Finite Element Modelling of Elastohydrodynamic Lubrication Problems
,
John Wiley & Sons, Ltd
,
Chichester, UK
.
16.
Venner
,
C. H.
,
Berger
,
G.
, and
Lugt
,
P. M.
,
2004
, “
Waviness Deformation in Starved EHL Circular Contacts
,”
ASME J. Tribol.
,
126
(
2
), pp.
248
257
.
17.
Venner
,
C.
,
1991
, “
Multilevel Solution of the EHL Line and Point Contact Problems
,”
Ph.D. thesis, University of Twente, Netherlands.
18.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
19.
Raisin
,
J.
,
Fillot
,
N.
,
Dureisseix
,
D.
,
Vergne
,
P.
, and
Lacour
,
V.
,
2015
, “
Characteristic Times in Transient Thermal Elastohydrodynamic Line Contacts
,”
Tribol. Int.
,
82
, pp.
472
483
.
20.
Bayada
,
G.
,
Chambat
,
M.
, and
El Alaoui Talibi
,
M.
,
1988
, “Stationary and Moving Free Boundary Problems Related to the Cavitation Problem,”
Boundary Control and Boundary Variations
,
J. P.
Zolésio
, ed.,
Springer
,
Berlin, Heidelberg, Germany
, pp.
38
54
.
21.
Dowson
,
D.
, and
Taylor
,
C.
,
1975
, “Fundamental Aspects of Cavitation in Bearings,”
Cavitation and Related Phenomena in Lubrication
,
D.
Dowson
,
M.
Godet
, and
C.
Taylor
, eds.,
Mechanical Engineering Publications
, pp.
15
26
.
22.
Winslow
,
A.
,
1966
, “
Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh
,”
J. Comput. Phys.
,
1
(
2
), pp.
149
172
.
23.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Soft.
,
46
(
1
), pp.
4
18
. CIVIL-COMP.
24.
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1981
, “
The Isothermal Elastohydrodynamic Lubrication of Spheres
,”
ASME J. Lubr. Tech.
,
103
(
4
), pp.
547
557
.
You do not currently have access to this content.