Abstract

In this work, high-temperature tribological characteristics of ilmenite-reinforced LM13 aluminum alloy–based matrix composites (AMCs) and boron carbide–reinforced AMCs are compared. Stir-cast composites were processed using boron carbide (covalently bonded discontinuous particles (CDP)) and ilmenite (natural discontinuous particles (NDP)) particles separately as reinforcements. The particle size range was 106–125 µm, and reinforcement levels were 5, 10, and 15 wt% for both types of composites. Both composites exhibited a uniform distribution of reinforced particles and grain refinement. Compared to the LM13 base alloy, NDP composite containing 15 wt% reinforcement showed significant improvement in hardness (57%), coefficient of friction (57%), mild-to-severe wear transition temperature, average steady-state wear-rate (49%), and coefficient of thermal expansion (55%). CDP-15 composite showed slightly better properties than NDP-15 composite. Microstructure refinement, increased dimensional stability, formation of the oxide layer, and formation of tribolayer due to reinforcement of the ceramic fillers were the main reasons for the improvement in properties of processed AMCs. Scanning electron microscope (SEM)-energy dispersive spectroscopy (EDS) of wear tracks-debris showed abrasive/delamination wear as the main mechanism for materials loss. The research showed that the low-cost ilmenite particles can substitute for the very costly boron carbide particles as reinforcements in AMCs used for dry sliding wear applications under high operating temperatures–applied load conditions of the order of 300 °C–49 N.

References

1.
Elwan
,
M.
,
Fathy
,
A.
,
Wagih
,
A.
,
Essa
,
A. R. S.
,
Abu-Oqail
,
A.
, and
EL-Nikhaily
,
A. E.
,
2020
, “
Fabrication and Investigation on the Properties of Ilmenite (FeTiO3)-Based Al Composite by Accumulative Roll Bonding
,”
J. Compos. Mater.
,
54
(
10
), pp.
1259
1271
.
2.
Gautam
,
G.
, and
Mohan
,
A.
,
2016
, “
Wear and Friction of AA5052-Al3Zr In Situ Composites Synthesized by Direct Melt Reaction
,”
ASME J. Tribol.
,
138
(
2
), p.
021602
.
3.
Karthikeyan
,
B.
,
Ramanathan
,
S.
, and
Ramakrishnan
,
V.
,
2010
, “
Thermo Physical Property Measurement of Metal-Matrix Composites
,”
Mater. Des.
,
31
, pp.
S82
S86
.
4.
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2021
, “
Comparison of Wear Behaviour of LM13 Al−Si Alloy Based Composites Reinforced With Synthetic (B4C) and Natural (Ilmenite) Ceramic Particles
,”
Trans. Nonferrous Met. Soc. China
,
31
(
12
), pp.
3613
3625
.
5.
Abbas
,
A.
, and
Huang
,
S.-J.
,
2020
, “
Qualitative and Quantitative Investigation of As-Cast and Aged CNT/AZ31 Metal Matrix Composites
,”
JOM
,
72
(
6
), pp.
2272
2282
.
6.
Islam
,
A.
,
Dwivedi
,
S. P.
,
Yadav
,
R.
, and
Dwivedi
,
V. K.
,
2021
, “
Development of Aluminium Based Composite by Utilizing Industrial Waste and Agro-Waste Material as Reinforcement Particles
,”
J. Inst. Eng. (India): Ser. D
,
102
(
2
), pp.
317
330
.
7.
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2023
, “
Tribological Properties of Hybrid Aluminium Matrix Composites Reinforced With Boron Carbide and Ilmenite Particles for Brake Rotor Applications
,”
Arch. Civ. Mech. Eng.
,
23
(
1
), pp.
1
18
.
8.
Hosseini
,
V. A.
,
Shabestari
,
S. G.
, and
Gholizadeh
,
R.
,
2013
, “
Study on the Effect of Cooling Rate on the Solidification Parameters, Microstructure, and Mechanical Properties of LM13 Alloy Using Cooling Curve Thermal Analysis Technique
,”
Mater. Des.
,
50
, pp.
7
14
.
9.
Saghafian
,
H.
,
Shabestari
,
S. G.
,
Ghadami
,
S.
, and
Ghoncheh
,
M. H.
,
2017
, “
Effects of Iron, Manganese, and Cooling Rate on Microstructure and Dry Sliding Wear Behavior of LM13 Aluminum Alloy
,”
Tribol. Trans.
,
60
(
5
), pp.
888
901
.
10.
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2022
, “
Effect of High Operating Temperatures on the Wear Characteristics of Boron Carbide and Ilmenite Reinforced LM13 Alloy Based Composites
,”
ASME J. Tribol.
,
144
(
10
), p.
101703
.
11.
Shabani
,
M. O.
, and
Mazahery
,
A.
,
2011
, “
Prediction of Wear Properties in A356 Matrix Composite Reinforced With B4C Particulates
,”
Synth. Met.
,
161
(
13–14
), pp.
1226
1231
.
12.
Nemati
,
N.
,
Emamy
,
M.
,
Penkov
,
O. V.
,
Kim
,
J.
, and
Kim
,
D.
,
2016
, “
Mechanical and High Temperature Wear Properties of Extruded Al Composite Reinforced With Al13Fe4 CMA Nanoparticles
,”
Mater. Des.
,
90
, pp.
532
544
.
13.
Palanivel
,
R.
,
Dinaharan
,
I.
,
Laubscher
,
R. F.
, and
Davim
,
J. P.
,
2016
, “
Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing
,”
Mater. Des.
,
106
, pp.
195
204
.
14.
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2023
, “
Tribological Characteristics of LM13 Alloy Based Ilmenite-Boron Carbide Reinforced Hybrid Composites for Brake Drum Applications
,”
Wear
,
522
, p.
204851
.
15.
Ravikumar
,
K.
,
Kiran
,
K.
, and
Sreebalaji
,
V. S.
,
2017
, “
Characterization of Mechanical Properties of Aluminium/Tungsten Carbide Composites
,”
Measurement
,
102
, pp.
142
149
.
16.
Sharma
,
S. K.
,
Saxena
,
K. K.
, and
Kumar
,
N.
,
2022
, “
Effect of SiC on Mechanical Properties of Al-Based Metal Matrix Composites Produced by Stir Casting
,”
Met. Sci. Heat Treat.
,
64
(
5–6
), pp.
316
320
.
17.
Sharma
,
S.
,
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2021
, “
Influence of Two Different Range of Sillimanite Particle Reinforcement on Tribological Characteristics of LM30 Based Composites Under Elevated Temperature Conditions
,”
Mater. Chem. Phys.
,
258
, p.
123988
.
18.
Gupta
,
R.
,
Sharma
,
S.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2020
, “
Wear Studies of Hybrid AMCs Reinforced With Naturally Occurring Sillimanite and Rutile Ceramic Particles for Brake-Rotor Applications
,”
Ceram. Int.
,
46
(
10B
), pp.
16849
16859
.
19.
Yang
,
C. C. T.
, and
Wei
,
W. C. J.
,
2000
, “
Effects of Material Properties and Testing Parameters on Wear Properties of Fine-Grain Zirconia (TZP)
,”
Wear
,
242
(
1–2
), pp.
97
104
.
20.
Gupta
,
R.
,
Sharma
,
S.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2020
, “
A Comparative Study of Dry Sliding Wear Behaviour of Sillimanite and Rutile Reinforced LM27 Aluminium Alloy Composites
,”
Mater. Res. Express
,
7
(
1
), p.
016540
.
21.
Wilson
,
N. C.
,
Muscat
,
J.
,
Mkhonto
,
D.
,
Ngoepe
,
P. E.
, and
Harrison
,
N. M.
,
2005
, “
Structure and Properties of Ilmenite From First Principles
,”
Phys. Rev. B
,
71
(
7
), p.
075202
.
22.
Singhal
,
V.
,
Gupta
,
A.
,
Pandey
,
O. P.
,
Sharma
,
D.
, and
Kumar Jain
,
V.
,
2023
, “
Investigate the Optical and Dry Sliding Wear Behavior of Solid Lubricated Sillimanite Reinforced Aluminum Metal Matrix Composite
,”
Mater. Today: Proc.
23.
Gupta
,
A.
,
Singhal
,
V.
, and
Pandey
,
O. P.
,
2023
, “
Study of the Wear Behavior of Dual Solid Lubricant-Induced Ilmenite-Reinforced Hypereutectic Al-Si Alloy Composites
,”
J. Mater. Eng. Perform.
, (Ref 20).
24.
Kumar
,
S.
,
Sarma
,
V. S.
, and
Murty
,
B. S.
,
2010
, “
High Temperature Wear Behavior of Al-4Cu-TiB2 in Situ Composites
,”
Wear
,
268
(
11–12
), pp.
1266
1274
.
25.
Kumar
,
N.
,
Gautam
,
G.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Mohan
,
S.
,
2016
, “
High-Temperature Tribology of AA5052/ZrB2 PAMCs
,”
ASME J. Tribol.
,
139
(
1
), p.
011601
.
26.
Prasad
,
R.
,
Kumar
,
H.
,
Kumar
,
P.
,
Tewari
,
S. P.
, and
Singh
,
J. K.
,
2021
, “
Filler Dispersion and Unidirectional Sliding Characteristics of As-Cast and Multi-Pass Friction Stir Processed ZrB2/AA7075 In-Situ Composites
,”
ASME J. Tribol.
,
143
(
8
), p.
081701
.
27.
Wang
,
Q. Z.
,
Lin
,
X.
,
Wen
,
X. L.
,
Kang
,
N.
, and
Huang
,
W. D.
,
2021
, “
Microstructure and Wear Behavior of Nano-TiB2p/2024Al Matrix Composites Fabricated by Laser Direct Energy Deposition With Powder Feeding
,”
ASME J. Tribol.
,
143
(
5
), p.
051101
.
28.
Panwar
,
R. S.
, and
Pandey
,
O. P.
,
2013
, “
Study of Wear Behavior of Zircon Sand-Reinforced LM13 Alloy Composites at Elevated Temperatures
,”
J. Mater. Eng. Perform.
,
22
(
6
), pp.
1765
1775
.
29.
Chen
,
G.
,
Song
,
Z.
,
Chen
,
J.
,
Peng
,
J.
, and
Srinivasakannan
,
C.
,
2013
, “
Evaluation of the Reducing Product of Carbonthermal Reduction of Ilmenite Ores
,”
J. Alloys Compd.
,
577
, pp.
610
614
.
30.
Sımsek
,
D.
, and
Ozyurek
,
D.
,
2020
, “
The Wear Performance at High Temperatures of ZrO2-Reinforced Aluminum Matrix Composites Produced by Mechanochemical Reaction Method
,”
ASME J. Tribol.
,
142
(
10
), p.
101701
.
31.
Raghavender
,
A. T.
,
Hong
,
N. H.
,
Lee
,
K. J.
,
Jung
,
M. H.
,
Skoko
,
Z.
,
Vasilevskiy
,
M.
,
Cerqueira
,
M. F.
, and
Samantilleke
,
A. P.
,
2013
, “
Nano-Ilmenite FeTiO3: Synthesis and Characterization
,”
J. Magn. Magn. Mater.
,
331
, pp.
129
132
.
32.
Kumar
,
C. A. V.
,
Rajadurai
,
J. S.
, and
Sundararajan
,
S.
,
2016
, “
Performance Enrichment on Tribological Characteristics of Powder Metallurgy Processed Aluminium Particulate Composites by Inclusion of Rutile (TiO2)
,”
J. Mater. Res.
,
31
(
16
), pp.
2445
2456
.
33.
Clauser
,
C.
, and
Huenges
,
E.
,
1995
, “Thermal Conductivity of Rocks and Minerals,”
Rock Physics and Phase Relations: A Handbook of Physical Constants
, Vol.
3
,
American Geophysical Union
,
Washington, DC
, pp.
105
126
.
34.
Abdou
,
M. I.
,
Al-Sabagh
,
A. M.
,
Ahmed
,
H. E.
, and
Fadl
,
A. M.
,
2018
, “
Impact of Barite and Ilmenite Mixture on Enhancing the Drilling Mud Weight
,”
Egypt. J. Pet.
,
27
(
4
), pp.
955
967
.
35.
Jafrey Daniel
,
J. D.
,
Babu
,
L. G.
,
Ramesh
,
M.
, and
Ravichandran
,
M.
,
2019
, “
Mechanical and Tribological Characteristics of ZrO2 Reinforced Al2014 Matrix Composites Produced via Stir Casting Route
,”
Mater. Res. Express
,
6
(
11
), p.
115542
.
36.
Patel
,
S. K.
,
Singh
,
V. P.
, and
Kuriachen
,
B.
,
2019
, “
Microstructural, Tribological and Mechanical Properties Evolution of ZrSiO4/A4047 Surface Composite Fabricated Through Friction Stir Processing
,”
Trans. Indian Inst. Met.
,
72
(
7
), pp.
1765
1774
.
37.
Alagarsamy
,
S. V.
, and
Ravichandran
,
M.
,
2019
, “
Synthesis, Microstructure and Properties of TiO2 Reinforced AA7075 Matrix Composites via Stir Casting Route
,”
Mater. Res. Express
,
6
(
8
), p.
086519
.
38.
1995
, “ASTM Standard G-99, Test Method for Wear Testing Using a Pin-on-Disk Apparatus,”
ASTM Annual Book of Standards
, Vol. 03.02, West Conshohocken, PA, 03.
39.
Seong
,
H. G.
,
Lopez
,
H. F.
,
Robertson
,
D. P.
, and
Rohatgi
,
P. K.
,
2008
, “
Interface Structure in Carbon and Graphite Fiber Reinforced 2014 Aluminum Alloy Processed With Active Fiber Cooling
,”
Mater. Sci. Eng. A
,
487
(
1–2
), pp.
201
209
.
40.
Tham
,
L. M.
,
Gupta
,
M.
, and
Cheng
,
L.
,
2001
, “
Effect of Limited Matrix-Reinforcement Interfacial Reaction on Enhancing the Mechanical Properties of Aluminium-Silicon Carbide Composites
,”
Acta Mater.
,
49
(
16
), pp.
3243
3253
.
41.
Nie
,
C.
,
Gu
,
J.
,
Liu
,
J.
, and
Zhang
,
D.
,
2008
, “
Investigation on Microstructures and Interface Character of B4C Particles Reinforced 2024Al Matrix Composites Fabricated by Mechanical Alloying
,”
J. Alloys Compd.
,
454
(
1–2
), pp.
118
122
.
42.
Lasa
,
L.
, and
Rodriguez-Ibabe
,
J. M.
,
2003
, “
Wear Behaviour of Eutectic and Hypereutectic Al-Si-Cu-Mg Casting Alloys Tested Against a Composite Brake Pad
,”
Mater. Sci. Eng. A
,
363
(
1–2
), pp.
193
202
.
43.
Karantzalis
,
A. E.
,
Lekatou
,
A.
,
Georgatis
,
E.
, and
Mavros
,
H.
,
2010
, “
Solidification Behaviour of Ceramic Particle Reinforced Al-Alloy Matrices
,”
J. Mater. Sci.
,
45
(
8
), pp.
2165
2173
.
44.
Grasso
,
S.
,
Hu
,
C.
,
Vasylkiv
,
O.
,
Suzuki
,
T. S.
,
Guo
,
S.
,
Nishimura
,
T.
, and
Sakka
,
Y.
,
2011
, “
High-Hardness B4C Textured by a Strong Magnetic Field Technique
,”
Scr. Mater.
,
64
(
3
), pp.
256
259
.
45.
Karantzalis
,
A. E.
,
Lekatou
,
A.
,
Georgatis
,
E.
,
Poulas
,
V.
, and
Mavros
,
H.
,
2010
, “
Microstructural Observations in a Cast Al-Si-Cu/TiC Composite
,”
J. Mater. Eng. Perform.
,
19
(
4
), pp.
585
590
.
46.
Singh
,
G.
, and
Goyal
,
S.
,
2018
, “
Microstructure and Mechanical Behavior of AA6082-T6/SiC/B4C-Based Aluminum Hybrid Composites
,”
Part. Sci. Technol.
,
36
(
2
), pp.
154
161
.
47.
Shen
,
Y. L.
,
Williams
,
J. J.
,
Piotrowski
,
G.
,
Chawla
,
N.
, and
Guo
,
Y. L.
,
2001
, “
Correlation Between Tensile and Indentation Behavior of Particle-Reinforced Metal Matrix Composites: An Experimental and Numerical Study
,”
Acta Mater.
,
49
(
16
), pp.
3219
3229
.
48.
Lalet
,
G.
,
Kurita
,
H.
,
Heintz
,
J. M.
,
Lacombe
,
G.
,
Kawasaki
,
A.
, and
Silvain
,
J. F.
,
2014
, “
Thermal Expansion Coefficient and Thermal Fatigue of Discontinuous Carbon Fiber-Reinforced Copper and Aluminum Matrix Composites Without Interfacial Chemical Bond
,”
J. Mater. Sci.
,
49
(
1
), pp.
397
402
.
49.
Ren
,
S.
,
He
,
X.
,
Qu
,
X.
,
Humail
,
I. S.
, and
Li
,
Y.
,
2007
, “
Effect of Mg and Si in the Aluminum on the Thermo-Mechanical Properties of Pressureless Infiltrated SiCp/Al Composites
,”
Compos. Sci. Technol.
,
67
(
10
), pp.
2103
2113
.
50.
Zhang
,
Q.
,
Wu
,
G.
,
Jiang
,
L.
, and
Chen
,
G.
,
2003
, “
Thermal Expansion and Dimensional Stability of Al-Si Matrix Composite Reinforced With High Content SiC
,”
Mater. Chem. Phys.
,
82
(
3
), pp.
780
785
.
51.
Jiang
,
T.
,
Li
,
S.
,
Yu
,
C.
,
Fu
,
J.
,
Wei
,
B.
,
Luo
,
L.
, and
Xu
,
G.
,
2019
, “
The Evolution on the Microstructure and Thermal Expansion Behavior of Al–50Si Alloy With Different P Contents
,”
J. Mater. Sci. Mater. Electron.
,
30
(
7
), pp.
6786
6794
.
52.
Di Giovanni
,
M. T.
,
De Menezes
,
J. T. O.
,
Cerri
,
E.
, and
Castrodeza
,
E. M.
,
2020
, “
Influence of Microstructure and Porosity on the Fracture Toughness of Al-Si-Mg Alloy
,”
J. Mater. Res. Technol.
,
9
(
2
), pp.
1286
1295
.
53.
Torres
,
H.
,
Varga
,
M.
,
Adam
,
K.
, and
Ripoll
,
M. R.
,
2016
, “
The Role of Load on Wear Mechanisms in High Temperature Sliding Contacts
,”
Wear
,
364–365
, pp.
73
83
.
You do not currently have access to this content.