Abstract

An optimal design method for the main bearing of a tunnel boring machine is proposed. In this method, the fatigue life is used as the objective function. Structural parameters, including clearance, are considered as design variables. First, a quasi-static model of the main bearing and a calculation model of the fatigue life are established. The correctness of the theoretical method is verified by comparing it with the calculation results of the finite element method. Next, the influence of clearance on the load-carrying performance under external loads is analyzed. There is an optimal negative clearance for the axial loaded and radial rows. With the increase in the external loads, the optimal negative clearance gradually decreases. The variation laws of the load-carrying performance for the axial loaded and supporting rows affected by axial clearance mainly depend on the bias load degree of the main bearing. Finally, based on the optimal design model of the main bearing, the optimal internal structure is obtained using the genetic algorithm. The optimized fatigue life is improved by 92.2%. The load-carrying performance of the optimal main bearing has also been significantly enhanced compared to the initial design. Therefore, the proposed optimization method provides a practical approach to the main bearing design.

References

1.
Aguirrebeitia
,
J.
,
Abasolo
,
M.
,
Avilés
,
R.
, and
Fernández de Bustos
,
I.
,
2012
, “
Theoretical Calculation of General Static Load-Carrying Capacity for the Design and Selection of Three Row Roller Slewing Bearings
,”
Mech. Mach. Theory
,
48
(
2
), pp.
52
61
.
2.
Feng
,
Y.
,
Huang
,
X.
,
Chen
,
J.
,
Wang
,
H.
, and
Hong
,
R.
,
2014
, “
Reliability-Based Residual Life Prediction of Large-Size Low-Speed Slewing Bearings
,”
Mech. Mach. Theory
,
81
(
11
), pp.
94
106
.
3.
Kim
,
S. W.
,
Kang
,
K.
,
Yoon
,
K.
, and
Choi
,
D.-H.
,
2016
, “
Design Optimization of an Angular Contact Ball Bearing for the Main Shaft of a Grinder
,”
Mech. Mach. Theory
,
104
(
10
), pp.
287
302
.
4.
Panda
,
S.
,
Panda
,
S. N.
,
Nanda
,
P.
, and
Mishra
,
D.
,
2015
, “
Comparative Study on Optimum Design of Rolling Element Bearing
,”
Tribol. Int.
,
92
(
12
), pp.
595
604
.
5.
Liu
,
J.
, and
Xu
,
Z.
,
2022
, “
An Optimization Design Method of a Cylindrical Roller Bearing With the Low Friction Torque
,”
ASME J. Tribol.
,
144
(
11
), p.
111201
.
6.
Gupta
,
S.
,
Tiwari
,
R.
, and
Nair
,
S. B.
,
2007
, “
Multi-Objective Design Optimization of Rolling Bearings Using Genetic Algorithms
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1418
1443
.
7.
Martinez
,
R. F.
,
Lorza
,
R. L.
,
Delgado
,
A. A. S.
, and
Piedra Pullaguari
,
N. O.
,
2018
, “
Optimizing Presetting Attributes by Softcomputing Techniques to Improve Tapered Roller Bearings Working Conditions
,”
Adv. Eng. Softw.
,
123
(
9
), pp.
13
24
.
8.
Kumar
,
K. S.
,
Tiwari
,
R.
, and
Prasad
,
P.
,
2009
, “
An Optimum Design of Crowned Cylindrical Roller Bearings Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051011
.
9.
Waghole
,
V.
, and
Tiwari
,
R.
,
2014
, “
Optimization of Needle Roller Bearing Design Using Novel Hybrid Methods
,”
Mech. Mach. Theory
,
72
(
2
), pp.
71
85
.
10.
Ahmad
,
M. S.
,
Tiwari
,
R.
, and
Mandawat
,
T.
,
2022
, “
Multi-Objective Robust Optimization of Deep Groove Ball Bearings Considering Manufacturing Tolerances Based on Fatigue and Wear Considerations
,”
ASME J. Tribol.
,
144
(
2
), p.
022301
.
11.
Verma
,
S. K.
, and
Tiwari
,
R.
,
2020
, “
Robust Optimum Design of Tapered Roller Bearings Based on Maximization of Fatigue Life Using Evolutionary Algorithm
,”
Mech. Mach. Theory
,
152
(
10
), p.
103894
.
12.
Kang
,
K.
,
Kim
,
S. W.
,
Yoon
,
K.
, and
Choi
,
D.-H.
,
2019
, “
Robust Design Optimization of an Angular Contact Ball Bearing Under Manufacturing Tolerance
,”
Struct. Multidiscipl. Optim.
,
60
(
4
), pp.
1645
1665
.
13.
Göncz
,
P.
, and
Glodež
,
S.
,
2013
, “
Static Capacity of a Large Double Row Slewing Ball Bearing With Predefined Irregular Geometry
,”
Mech. Mach. Theory
,
64
(
6
), pp.
67
79
.
14.
Chen
,
L.
,
Ma
,
F.
,
Qiu
,
M.
,
Dong
,
Y.
,
Pang
,
X.
,
Li
,
J.
, and
Yang
,
C.
,
2022
, “
Optimal Design of Clearances of Cylindrical Roller Bearing Components Based on Dynamic Analysis
,”
Math Probl. Eng.
,
2022
(
2
), p.
4811914
.
15.
Zupan
,
S.
, and
Prebil
,
I.
,
2001
, “
Carrying Angle and Carrying Capacity of a Large Single Row Ball Bearing as a Function of Geometry Parameters of the Rolling Contact and the Supporting Structure Stiffness
,”
Mech. Mach. Theory
,
36
(
10
), pp.
1087
1103
.
16.
Dawoud
,
M.
,
Beitler
,
S.
, and
Schwarze
,
H.
,
2023
, “
Slip Characteristics in Cylindrical Roller Bearings—Part III: Influence of Bearing Clearance on the Roller and Set Slip
,”
ASME J. Tribol.
,
145
(
2
), p.
021205
.
17.
Ambrożkiewicz
,
B.
,
Syta
,
A.
,
Gassner
,
A.
,
Georgiadis
,
A.
,
Litak
,
G.
, and
Meier
,
N.
,
2022
, “
The Influence of the Radial Internal Clearance on the Dynamic Response of Self-Aligning Ball Bearings
,”
Mech. Syst. Signal Process.
,
171
(
5
), p.
108954
.
18.
Wang
,
Y.
, and
Cao
,
J.
,
2015
, “
Determination of the Precise Static Load-Carrying Capacity of Pitch Bearings Based on Static Models Considering Clearance
,”
Int. J. Mech. Sci.
,
100
(
9
), pp.
209
215
.
19.
Glodež
,
S.
, and
Flašker
,
J.
,
2012
, “
Computational Model for Calculation of Static Capacity and Lifetime of Large Slewing Bearing’s Raceway
,”
Mech. Mach. Theory
,
47
(
1
), pp.
16
30
.
20.
Göncz
,
P.
, and
Glodež
,
S.
,
2013
, “
Computational Model for Determination of Static Load Capacity of Three-Row Roller Slewing Bearings With arbi20, Trary Clearances and Predefined Raceway Deformations
,”
Int. J. Mech. Sci.
,
73
(
8
), pp.
82
92
.
21.
Jiang
,
Z.
,
Huang
,
X.
,
Zhu
,
H.
, and
Du
,
S.
,
2022
, “
A New Method for Contact Characteristic Analysis of the Tapered Roller Bearing in Wind Turbine Main Shaft
,”
Eng. Fail. Anal.
,
141
(
11
), p.
106729
.
22.
Yu
,
A.
,
Huang
,
H.-Z.
,
Li
,
H.
,
Li
,
Y.-F.
, and
Bai
,
S.
,
2020
, “
Reliability Analysis of Rolling Bearings Considering Internal Clearance
,”
J. Mech. Sci. Technol.
,
34
(
10
), pp.
3963
3971
.
23.
Oswald
,
F. B.
,
Zaretsky
,
E. V.
, and
Poplawski
,
J. V.
,
2012
, “
Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings
,”
Tribol. Trans.
,
55
(
2
), pp.
245
265
.
24.
Fang
,
B.
, and
Zhang
,
J.
,
2022
, “
Analytical Determination of the Optimal Clearance for the Fatigue Life of Ball Bearing Under Different Load Conditions
,”
ASME J. Tribol.
,
144
(
2
), p.
021203
.
25.
Deng
,
S. E.
, and
Jia
,
Q. Y.
,
2014
,
Design Principle of Rolling Bearing
,
Standards Press of China
,
Beijing
, Chap.
1
.
26.
Warda
,
B.
, and
Chudzik
,
A.
,
2014
, “
Fatigue Life Prediction of the Radial Roller Bearing With the Correction of Roller Generators
,”
Int. J. Mech. Sci.
,
89
(
12
), pp.
299
310
.
27.
Qiu
,
L.
,
Liu
,
S.
,
Chen
,
X.
, and
Wang
,
Z.
,
2022
, “
Lubrication and Loading Characteristics of Cylindrical Roller Bearings With Misalignment and Roller Modifications
,”
Tribol. Int.
,
165
(
6
), p.
107291
.
28.
Cui
,
L.
, and
He
,
Y.
,
2015
, “
A New Logarithmic Profile Model and Optimization Design of Cylindrical Roller Bearing
,”
Ind. Lubr. Tribol.
,
67
(
5
), pp.
498
508
.
29.
Ma
,
S.
,
He
,
G.
,
Yan
,
K.
,
Li
,
W.
,
Zhu
,
Y.
, and
Hong
,
J.
,
2022
, “
Structural Optimization of Ball Bearings With Three-Point Contact at High-Speed
,”
Int. J. Mech. Sci.
,
229
(
9
), p.
107494
.
30.
He
,
P.
,
Hong
,
R.
,
Wang
,
H.
, and
Lu
,
C.
,
2018
, “
Fatigue Life Analysis of Slewing Bearings in Wind Turbines
,”
Int. J. Fatigue
,
111
(
6
), pp.
233
242
.
31.
Yang
,
L.
,
Xu
,
T.
,
Xu
,
H.
, and
Wu
,
Y.
,
2018
, “
Mechanical Behavior of Double-Row Tapered Roller Bearing Under Combined External Loads and Angular Misalignment
,”
Int. J. Mech. Sci.
,
142
(
7
), pp.
561
574
.
32.
Warda
,
B.
, and
Chudzik
,
A.
,
2016
, “
Effect of Ring Misalignment on the Fatigue Life of the Radial Cylindrical Roller Bearing
,”
Int. J. Mech. Sci.
,
111
(
6
), pp.
1
11
.
33.
Wang
,
H.
,
He
,
P.
,
Pang
,
B.
, and
Gao
,
X.
,
2017
, “
A New Computational Model of Large Three-Row Roller Slewing Bearings Using Nonlinear Springs
,”
J. Mech. Eng. Sci.
,
231
(
20
), pp.
3831
3839
.
34.
Alain
,
D.
,
Chaib
,
Z.
, and
Ghosn
,
A.
,
2008
, “
3D Simplified Finite Elements Analysis of Load and Contact Angle in a Slewing Ball Bearing
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082601
.
You do not currently have access to this content.