Abstract

The excellent tribological performance of nanoparticles as additives in lubricating greases has attracted widespread attention. In this study, a silane coupling agent (KH550) was used to chemically modify nanoscale mullite (composed of Al2O3 and SiO2), and the modified nano-KH-mullite was dispersed as an additive in polyurea grease at different ratios (0.01, 0.05, 0.07, 0.1, and 0.3 wt%). The friction and wear performance of the compound polyurea greases were evaluated using a four-ball friction tester. Professional instruments will be utilized to analyze the micro-morphology, 3D profile, elemental content, and valence state of the worn surface, aiming to investigate the lubrication and antiwear mechanism of the nano-KH-mullite additive. The results indicate that nano-mullite effectively improves the antiwear and antifriction performance of the polyurea grease. When the additional content is 0.05 wt%, the friction coefficient (COF) and the wear scar diameter (WSD) are reduced by approximately 19.97% and 11.1%, respectively, and the roughness of the worn surface is also reduced. The excellent tribological performance of the composite grease is attributed not only to the good dispersibility of KH-mullite but also to its ability to promote the formation of a composite lubrication film on the friction pair surface. The component KH-Al2O3 in the KH-mullite can fill and repair scratches and grooves on the worn surface, while the other component KH-SiO2 can bear the load and convert the friction mode to rolling friction.

References

1.
Sun
,
J.
, and
Du
,
S.
,
2019
, “
Application of Graphene Derivatives and Their Nanocomposites in Tribology and Lubrication: A Review
,”
RSC Adv.
,
9
(
69
), pp.
40642
40661
.
2.
Wang
,
W.
,
He
,
Y.
,
Zhao
,
J.
,
Mao
,
J.
,
Hu
,
Y.
, and
Luo
,
J.
,
2020
, “
Optimization of Groove Texture Profile to Improve Hydrodynamic Lubrication Performance: Theory and Experiments
,”
Friction
,
8
(
1
), pp.
83
94
.
3.
Ouyang
,
T.
,
Huang
,
H.
,
Zhou
,
X.
,
Pan
,
M.
,
Chen
,
N.
, and
Lv
,
D.
,
2018
, “
A Finite Line Contact Tribo-Dynamic Model of a Spur Gear Pair
,”
Tribol. Int.
,
119
, pp.
753
765
.
4.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2017
, “
Development of Nanocomposite Grease: Microstructure, Flow, and Tribological Studies
,”
ASME J. Tribol.
,
139
(
5
), p.
052001
.
5.
Cai
,
M.
,
Zhao
,
Z.
,
Liang
,
Y.
,
Zhou
,
F.
, and
Liu
,
W.
,
2010
, “
Alkyl Imidazolium Ionic Liquids as Friction Reduction and Anti-Wear Additive in Polyurea Grease for Steel/Steel Contacts
,”
Tribol. Lett.
,
40
(
2
), pp.
215
224
.
6.
Lyadov
,
A. S.
,
Maksimova
,
Y. M.
,
Shakhmatova
,
A. S.
,
Kirillov
,
V. V.
, and
Parenago
,
O. P.
,
2018
, “
Urea (Polyurea) Greases
,”
Russ. J. Appl. Chem.
,
91
(
2
), pp.
885
894
.
7.
Kumar
,
A.
,
Humphreys
,
S.
, and
Mallory
,
B.
,
2010
, “
Robust Polyurea Grease for Wide Range of Industrial Applications
,”
Proceedings of the 12th NLGI Lubricating Grease Conference on a Theme Lubricating Greases Challenges Ahead
,
Goa, India
,
Jan. 28–30
.
8.
Papay
,
A. G.
,
1998
, “
Antiwear and Extreme-Pressure Additives in Lubricants
,”
Lubr. Sci.
,
10
(
3
), pp.
209
224
.
9.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Dang
,
H.
,
2001
, “
Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin
,”
Wear
,
249
(
5–6
), pp.
333
337
.
10.
Wang
,
Z.
, and
Wu
,
W.
,
2018
, “
The Tribological Properties of the Polyurea Greases Based on Oil-Miscible Phosphonium-Based Ionic Liquids
,”
Lubr. Sci.
,
30
(
1
), pp.
16
22
.
11.
Battez
,
A. H.
,
Rico
,
J. E. F.
,
Arias
,
A. N.
,
Rodriguez
,
J. V.
,
Rodriguez
,
R. C.
, and
Fernandez
,
J. D.
,
2006
, “
The Tribological Behaviour of ZnO Nanoparticles as an Additive to PAO6
,”
Wear
,
261
(
3–4
), pp.
256
263
.
12.
Qiang
,
H.
,
Anling
,
L.
,
Yangming
,
Z.
,
Liu
,
S.
, and
Yachen
,
G.
,
2017
, “
Experimental Study of Tribological Properties of Lithium-Based Grease With Cu Nanoparticle Additive
,”
Tribol. Mater. Surf. Interfaces
,
11
(
2
), pp.
75
82
.
13.
Wang
,
J.
,
Zhang
,
H.
,
Hu
,
W.
, and
Li
,
J.
,
2022
, “
Tribological Properties and Lubrication Mechanism of Nickel Nanoparticles as an Additive in Lithium Grease
,”
Nanomaterials
,
12
(
13
), p.
2287
.
14.
Ouyang
,
T.
,
Shen
,
Y.
,
Yang
,
R.
,
Liang
,
L.
,
Liang
,
H.
,
Lin
,
B.
,
Tian
,
Z. Q.
, and
Shen
,
P. K.
,
2020
, “
3D Hierarchical Porous Graphene Nanosheets as an Efficient Grease Additive to Reduce Wear and Friction Under Heavy-Load Conditions
,”
Tribol. Int.
,
144
, p.
106118
.
15.
Niu
,
M.
, and
Qu
,
J.
,
2018
, “
Tribological Properties of Nano-Graphite as an Additive in Mixed Oil-Based Titanium Complex Grease
,”
RSC Adv.
,
8
(
73
), pp.
42133
42144
.
16.
Wu
,
C.
,
Xiong
,
R.
,
Ni
,
J.
,
Yao
,
L.
,
Chen
,
L.
, and
Li
,
X.
,
2020
, “
Effects of CuO Nanoparticles on Friction and Vibration Behaviors of Grease on Rolling Bearing
,”
Tribol. Int.
,
152
, p.
106552
.
17.
He
,
Q.
,
Li
,
A.
,
Guo
,
Y.
,
Liu
,
S.
,
Zhang
,
Y.
, and
Kong
,
L.
,
2018
, “
Tribological Properties of Nanometer Cerium Oxide as Additives in Lithium Grease
,”
J. Rare Earths
,
36
(
2
), pp.
209
214
.
18.
Wu
,
C.
,
Li
,
S.
,
Chen
,
Y.
,
Yao
,
L.
,
Li
,
X.
, and
Ni
,
J.
,
2023
, “
Tribological Properties of Chemical Composite and Physical Mixture of ZnO and SiO2 Nanoparticles as Grease Additives
,”
Appl. Surf. Sci.
,
612
, p.
155932
.
19.
Qiang
,
H.
,
Wang
,
T.
,
Qu
,
H.
,
Zhang
,
Y.
,
Li
,
A.
, and
Kong
,
L.
,
2019
, “
Tribological and Rheological Properties of Nanorods–Al2O3 as Additives in Grease
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
233
(
4
), pp.
605
614
.
20.
Mahara
,
M.
, and
Singh
,
Y.
,
2020
, “
Tribological Analysis of the Neem Oil During the Addition of SiO2 Nanoparticles at Different Loads
,”
Mater. Today Proc.
,
28
(
3
), pp.
1412
1415
.
21.
He
,
Q.
,
Li
,
A.
,
Guo
,
Y.
,
Liu
,
S.
, and
Kong
,
L. H.
,
2017
, “
Effect of Nanometer Silicon Dioxide on the Frictional Behavior of Lubricating Grease
,”
Nanomater. Nanotechnol.
,
7
, p.
184798041772593
.
22.
Rawat
,
S. S.
,
Harsha
,
A. P.
, and
Deepak
,
A. P.
,
2019
, “
Tribological Performance of Paraffin Grease With Silica Nanoparticles as an Additive
,”
Appl. Nanosci.
,
9
(
3
), pp.
305
315
.
23.
Wu
,
L. M.
,
Yang
,
B. R.
,
Zhao
,
F. X.
, and
Zhang
,
Z. Z.
,
2021
, “
Tribological Properties of Complex Calcium Sulfonate Grease With Ultrafine SiO2/MoS2 Powders
,”
J. Nano Res.
,
66
, pp.
35
44
.
24.
Wu
,
C.
,
Yang
,
K.
,
Chen
,
Y.
,
Ni
,
J.
,
Yao
,
L.
, and
Li
,
X.
,
2021
, “
Investigation of Friction and Vibration Performance of Lithium Complex Grease Containing Nano-Particles on Rolling Bearing
,”
Tribol. Int.
,
155
, p.
106761
.
25.
Nabhan
,
A.
,
Rashed
,
A.
,
Ghazaly
,
N. M.
,
Abdo
,
J.
, and
Haneef
,
M. D.
,
2021
, “
Tribological Properties of Al2O3 Nanoparticles as Lithium Grease Additives
,”
Lubricants
,
9
(
1
), p.
9
.
26.
Zhang
,
L.
,
Chen
,
L.
,
Wan
,
H.
,
Chen
,
J.
, and
Zhou
,
H.
,
2011
, “
Synthesis and Tribological Properties of Stearic Acid-Modified Anatase (TiO2) Nanoparticles
,”
Tribol. Lett.
,
41
(
2
), pp.
409
416
.
27.
Zhang
,
H.
,
Han
,
S.
,
Hu
,
W.
, and
Li
,
J.
,
2021
, “
Tribological Study of TiO2 Nanoparticles Modified With Stearic Acid as Additives in Lithium Grease
,”
Ind. Lubr. Tribol.
,
73
(
6
), pp.
904
910
.
28.
Bao
,
Y. Y.
,
Sun
,
J. L.
, and
Kong
,
L. H.
,
2017
, “
Tribological Properties and Lubricating Mechanism of SiO2 Nanoparticles in Water-Based Fluid
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
182
(
1
), p.
012025
.
29.
Peng
,
D. X.
,
Chen
,
C. H.
,
Kang
,
Y.
,
Chang
,
Y.
, and
Chang
,
S.
,
2010
, “
Size Effects of SiO2 Nanoparticles as Oil Additives on Tribology of Lubricant
,”
Ind. Lubr. Tribol.
,
62
(
2
), pp.
111
120
.
30.
Schneider
,
H.
, and
Komarneni
,
S.
,
2006
,
Mullite
,
John Wiley & Sons
.
31.
Schneider
,
H.
,
Schreuer
,
J.
, and
Hildmann
,
B.
,
2008
, “
Structure and Properties of Mullite – A Review
,”
J. Eur. Ceram. Soc.
,
28
(
2
), pp.
329
344
.
32.
Wang
,
N.
, and
Yin
,
Z.
,
2022
, “
The Influence of Mullite Shape and Amount on the Tribological Properties of Non-Asbestos Brake Friction Composites
,”
Lubricants
,
10
(
9
), p.
220
.
33.
Cai
,
P.
,
Wang
,
Y.
,
Wang
,
T.
, and
Wang
,
Q.
,
2016
, “
Improving Tribological Behaviors of Friction Material by Mullite
,”
Tribol. Int.
,
93
, pp.
282
288
.
34.
Li
,
C.
,
Qi
,
S.
, and
Zhang
,
D.
,
2010
, “
Thermal Degradation of Environmentally Friendly Phenolic Resin/Al2O3 Hybrid Composite
,”
J. Appl. Polym. Sci.
,
115
(
6
), pp.
3675
3679
.
35.
Yu
,
J.
,
Bai
,
H.
,
Wang
,
J.
,
Li
,
Z.
,
Jiao
,
C.
,
Liu
,
Q.
,
Zhang
,
M.
, and
Liu
,
L.
,
2013
, “
Synthesis of Alumina Nanosheets via Supercritical Fluid Technology With High Uranyl Adsorptive Capacity
,”
New J. Chem.
,
37
(
2
), pp.
366
372
.
36.
Ge
,
M.
,
Li
,
Q.
,
Zhang
,
J.
,
Zhao
,
C.
,
Lu
,
C.
,
Yin
,
Z.
, and
Yu
,
C.
,
2020
, “
Enhancing Thermal Conductivity of the Insulating Layer of High-Frequency Copper Clad Laminates via Incorporating Surface Modified Spherical hBN Fillers
,”
J. Mater. Sci.: Mater. Electron.
,
31
(
5
), pp.
4214
4223
.
37.
Xu
,
Y.
,
Gao
,
Q.
,
Ouyang
,
C. F.
,
Guo
,
H.
, and
Xiang
,
X.
,
2014
, “
Study on the Properties of Nano-Al2O3/Phenyl Silicone Rubber Composites
,”
Proceedings of the 2015 International Conference on Material Science and Applications (ICMSA-15)
,
Suzhou, China
,
June 13–14
, Atlantis Press, pp.
1031
1036
.
38.
Roy
,
K.
,
Mandal
,
S. K.
,
Alam
,
M. N.
, and
Debnath
,
S. C.
,
2016
, “
A Comparison Between Polyethylene Glycol (PEG) and Polypropylene Glycol (PPG) Treatment on the Properties of Nano-Titanium Dioxide (TiO2) Based Natural Rubber (NR) Nanocomposites
,”
Polym. Bull.
,
73
(
11
), pp.
3065
3079
.
39.
Wu
,
C.
,
Xie
,
Y.
,
Zhao
,
H.
,
Yang
,
H.
,
Li
,
X.
, and
Ni
,
J.
,
2022
, “
Effects of hBN and CaCO3 Nanoparticles on Tribological and Vibration Properties of Polyurea Grease on Rolling Bearing
,”
Tribol. Lett.
,
70
(
3
), p.
95
.
40.
Martín-Alfonso
,
J. E.
,
López-Beltrán
,
F.
,
Valencia
,
C.
, and
Franco
,
J. M.
,
2018
, “
Effect of an Alkali Treatment on the Development of Cellulose Pulp-Based Gel-Like Dispersions in Vegetable oil for Use as Lubricants
,”
Tribol. Int.
,
123
, pp.
329
336
.
41.
Zhang
,
K.
,
Peng
,
X.
,
Zhang
,
Y.
,
Zhou
,
H.
, and
Ma
,
M.
,
2019
, “
Numerical Thermal Analysis of Grease-Lubrication in Limited Line Contacts Considering Asperity Contact
,”
Tribol. Int.
,
134
, pp.
372
384
.
42.
Ren
,
G.
,
Sun
,
X.
,
Li
,
W.
,
Li
,
H.
,
Zhang
,
L.
,
Fan
,
X.
,
Li
,
D.
, and
Zhu
,
M.
,
2021
, “
Improving the Lubrication and Anti-Corrosion Performance of Polyurea Grease via Ingredient Optimization
,”
Friction
,
9
(
5
), pp.
1077
1097
.
43.
Fan
,
X.
, and
Wang
,
L.
,
2015
, “
High-performance Lubricant Additives Based on Modified Graphene Oxide by Ionic Liquids
,”
J. Colloid Interface Sci.
,
452
, pp.
98
108
.
44.
Kecheng
,
G. U.
,
Boshui
,
C.
, and
Yong
,
C.
,
2013
, “
Preparation and Tribological Properties of Lanthanum-Doped TiO2 Nanoparticles in Rapeseed Oil
,”
J. Rare Earths
,
31
(
6
), pp.
589
594
.
45.
Nan
,
F.
, and
Yin
,
Y.
,
2021
, “
Improving of the Tribological Properties of Attapulgite Base Grease With Graphene
,”
Lubr. Sci.
,
33
(
7
), pp.
380
393
.
46.
Wang
,
Z. Y.
,
Xia
,
Y. Q.
,
Liu
,
Z. L.
, and
Hu
,
T.
,
2011
, “
Friction and Wear Behaviour of Laser-Textured Surfaces Under the Lubrication of Polyurea Grease Containing Various Additives
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
225
(
3
), pp.
139
150
.
47.
Liu
,
E.
, and
Kouame
,
S. D.
,
2014
, “
An XPS Study on the Composition of Zinc Dialkyl Dithiophosphate Tribofilms and Their Effect on Camshaft Lobe Wear
,”
Tribol. Trans.
,
57
(
1
), pp.
18
27
.
48.
Wu
,
X.
,
Wang
,
X.
, and
Liu
,
W.
,
2014
, “
Tribological Properties of Naphthyl Phenyl Diphosphates as Antiwear Additive in Polyalkylene Glycol and Polyurea Grease for Steel/Steel Contacts at Elevated Temperature
,”
RSC Adv.
,
4
(
12
), pp.
6074
6082
.
49.
Tan
,
B. J.
,
Klabunde
,
K. J.
, and
Sherwood
,
P. M. A.
,
1990
, “
X-Ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina
,”
Chem. Mater.
,
2
(
2
), pp.
186
191
.
50.
Paparazzo
,
E.
,
1987
, “
XPS and Auger Spectroscopy Studies on Mixtures of the Oxides SiO2, Al2O3, Fe2O3 and Cr2O3
,”
J. Electron Spectrosc. Relat. Phenom.
,
43
(
2
), pp.
97
112
.
51.
Chao
,
S. S.
,
Takagi
,
Y.
,
Lucovsky
,
G.
,
Pai
,
P.
,
Custer
,
R. C.
,
Tyler
,
J. E.
, and
Keem
,
J. E.
,
1986
, “
Chemical States Study of Si in SiOx Films Grown by PECVD
,”
Appl. Surf. Sci.
,
26
(
4
), pp.
575
583
.
52.
Kim
,
Y. C.
,
Park
,
H. H.
,
Chun
,
J. S.
, and
Lee
,
W.-J.
,
1994
, “
Compositional and Structural Analysis of Aluminum Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition
,”
Thin Solid Films
,
237
(
1–2
), pp.
57
65
.
You do not currently have access to this content.