Abstract

To improve mechanical efficiency, the tribological performance of short-period intermittent motion needs to be investigated. Based on the theory of thermal elastohydrodynamic lubrication (EHL) and considering the influences of rough surface, a mixed-EHL model under point contact simple sliding intermittent motion is established. Using this model, the transition from mixed-EHL to EHL in the contact area is realized by changing the period of intermittent motion and setting the surface roughness. It is found that the thermal effect on simple sliding intermittent motion should not be ignored, and the pressure, temperature rise distribution, and friction coefficient during the stop and start-up are fluctuated obviously. Under the condition of rough surface contact, the contact area will enter the mixed-EHL state during the stop and start-up. Shortening the period of intermittent motion is beneficial to alleviate the adverse effect of the mixed-EHL.

References

1.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
67
74
.
2.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part II—Surface Temperature Rise Model and Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
75
82
.
3.
Popovici
,
G.
,
Venner
,
C. H.
, and
Lugt
,
P. M.
,
2004
, “
Effects of Load System Dynamics on the Film Thickness in EHL Contacts During Start Up
,”
ASME J. Tribol.
,
126
(
2
), pp.
258
266
.
4.
Krupka
,
I.
,
Svoboda
,
P.
, and
Hartl
,
M.
,
2010
, “
Effect of Surface Topography on Mixed Lubrication Film Formation During Start Up Under Rolling/Sliding Conditions
,”
Trib. Int.
,
43
(
5–6
), pp.
1035
1042
.
5.
Bouyer
,
J.
, and
Fillon
,
M.
,
2011
, “
Experimental Measurement of the Friction Torque on Hydrodynamic Plain Journal Bearings During Start-Up
,”
Tribol. Int.
,
44
(
7–8
), pp.
772
781
.
6.
Gu
,
C. X.
,
Meng
,
X. H.
,
Xie
,
Y. B.
, and
Kong
,
X. L.
,
2017
, “
Performance of Surface Texturing During Start-Up Under Starved and Mixed Lubrication
,”
ASME J. Tribol.
,
139
(
1
), p.
011702
.
7.
Xiang
,
G.
,
Han
,
Y. F.
,
He
,
T.
,
Wang
,
J. X.
,
Xiao
,
K.
, and
Li
,
J.
,
2020
, “
Transient Tribo-Dynamic Model for Journal Bearings During Start-Up Considering 3D Thermal Characteristic
,”
Tribol. Int.
,
144
(
10
), p.
106123
.
8.
Cui
,
S. H.
,
Gu
,
L.
,
Wang
,
L. Q.
,
Xu
,
B.
, and
Zhang
,
C. W.
,
2018
, “
Numerical Analysis on the Dynamic Contact Behavior of Hydrodynamic Journal Bearings During Start-Up
,”
Tribol. Int.
,
121
, pp.
260
268
.
9.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2018
, “
Experimental Analysis of the Hydrodynamic Effect During Start-Up of Fixed Geometry Thrust Bearings
,”
Tribol. Int.
,
120
, pp.
299
308
.
10.
Xiang
,
G.
, and
Han
,
Y.
,
2020
, “
Study on the Tribo-Dynamic Performances of Water-Lubricated Microgroove Bearings During Start-Up
,”
Tribol. Int.
,
151
, p.
106395
.
11.
Liang
,
P.
,
Li
,
X.
,
Guo
,
F.
,
Cao
,
Y.
,
Zhang
,
X.
, and
Jiang
,
F.
,
2022
, “
Influence of Sea Wave Shock on Transient Start-Up Performance of Water-Lubricated Bearing
,”
Tribol. Int.
,
167
, p.
107332
.
12.
Sperka
,
P.
,
Wang
,
J.
,
Krupka
,
I.
,
Hartl
,
M.
, and
Kaneta
,
M.
,
2014
, “
Occurrence of High Pressure Spike in Unidirectional Start–Stop–Start Point Contacts
,”
ASME J. Tribol.
,
136
(
4
), p.
041503
.
13.
Wang
,
F.
,
2014
,
Study on the EHL Oil Films Under Intermittent Motion
,
Qingdao University of Technology
,
Qingdao, China
.
14.
Wu
,
D. H.
,
Wang
,
J.
, and
Kaneta
,
M.
,
2018
, “
Performance of EHL Oil Film in Intermittent Motion
,”
Tribol. Onli.
,
13
(
4
), pp.
204
211
.
15.
Zhang
,
C. W.
,
Jiang
,
X. Q.
,
Wang
,
L. Q.
,
Sun
,
T.
, and
Gu
,
L.
,
2018
, “
Effect of Surface Roughness on the Start-Stop Behavior of Air Lubricated Thrust Micro-Bearings
,”
Tribol. Int.
,
119
, pp.
436
442
.
16.
Sander
,
D. E.
, and
Allmaier
,
H.
,
2018
, “
Starting and Stopping Behavior of Worn Journal Bearings
,”
Tribol. Int.
,
127
, pp.
478
488
.
17.
Cen
,
H.
, and
Lugt
,
P. M.
,
2021
, “
Effect of Start-Stop Motion on Contact Replenishment in a Grease Lubricated Deep Groove Ball Bearing
,”
Tribol. Int.
,
157
, p.
106882
.
18.
Wang
,
J.
,
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2013
, “
Influence of Surface Waviness on the Thermal Elastohydrodynamic Lubrication of an Eccentric-Tappet Pair
,”
ASME J. Tribol.
,
135
(
2
), p.
021001
.
19.
Pei
,
J.
,
Han
,
X.
,
Tao
,
Y.
, and
Feng
,
S.
,
2020
, “
Mixed Elastohydrodynamic Lubrication Analysis of Line Contact With Non-Gaussian Surface Roughness
,”
Tribol. Int.
,
151
, p.
106449
.
20.
Megalingam
,
A.
, and
Ramji
,
K. S. H.
,
2021
, “
A Comparison on Deterministic, Statistical and Statistical With Asperity Interaction Rough Surface Contact Models
,”
J. Bio Tribo Cor.
,
7
(
3
), p.
95
.
21.
Zhu
,
S.
, and
Ni
,
L.
,
2021
, “
A Static Friction Model for Unlubricated Contact of Random Rough Surfaces at Micro/Nano Scale
,”
Micromachines
,
12
(
4
), p.
368
.
22.
Kumar
,
R.
, and
Azam
,
M. S.
,
2020
, “
Effect of Directionally Oriented Random Roughness on Performance of a Rayleigh Step Bearing Operating Under Mixed-Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
153
, p.
106572
.
23.
Li
,
S.
,
Kolivand
,
A.
, and
Anisetti
,
A.
,
2022
, “
An Investigation on Starvation Onset of Rough Surface Line Contacts
,”
ASME J. Tribol.
,
144
(
3
), p.
031602
.
24.
Wang
,
D.
,
Yang
,
J.
,
Wei
,
P.
, and
Pu
,
W.
,
2021
, “
A Mixed EHL Model of Grease Lubrication Considering Surface Roughness and the Study of Friction Behavior
,”
Tribol. Int.
,
154
, p.
106710
.
25.
Zhou
,
G.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Pu
,
W.
,
2021
, “
Analysis of Transient Mixed Elastohydrodynamic Lubrication in Planetary Roller Screw Mechanism
,”
Tribol. Int.
,
163
, p.
107158
.
26.
Wang
,
Z.
,
She
,
S.
,
Yang
,
J.
,
Pei
,
X.
, and
Pu
,
W.
,
2021
, “
Dynamic Contact Stiffness of Transient Mixed Lubrication Induced by Periodic Load and Speed
,”
Tribol. Int.
,
164
, p.
107225
.
27.
Wang
,
Z.
,
Pu
,
W.
,
Pei
,
X.
, and
Cao
,
W.
,
2021
, “
Nonlinear Dynamical Behaviors of Spiral Bevel Gears in Transient Mixed Lubrication
,”
Tribol. Int.
,
160
, p.
107022
.
28.
Hu
,
Y.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
29.
Wang
,
Q. J.
,
Zhu
,
D.
,
Cheng
,
H. S.
,
Yu
,
T.
,
Jiang
,
X.
, and
Liu
,
S.
,
2004
, “
Mixed Lubrication Analyses by a Macro-Micro Approach and a Full-Scale Mixed EHL Model
,”
ASME J. Tribol.
,
126
(
1
), pp.
81
91
.
30.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2013
, “
An Engineering Approach for the Prediction of Wear in Mixed Lubricated Contacts
,”
Tribol. Int.
,
308
, pp.
121
131
.
31.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
A Study on the Effect of Starvation in Mixed Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
85
, pp.
26
36
.
32.
Pu
,
W.
,
Wang
,
J.
, and
Zhu
,
D.
,
2016
, “
Progressive Mesh Densification (PMD) Method for Numerical Solution of Mixed Electrohydrodynamic Lubrication
,”
ASME J. Tribol.
,
138
(
2
), p.
021502
.
33.
He
,
T.
,
Zhu
,
D.
,
Yu
,
C.
, and
Wang
,
Q. J.
,
2019
, “
Mixed Electrohydrodynamic Lubrication Model for Finite Roller-Coated Half Space Interfaces
,”
Tribol. Int.
,
134
, pp.
178
189
.
34.
Meng
,
F. Z.
,
2016
, “
Development History, Technical Study Status and Prospect of Chinese Chain Drive Industry
,”
J. Mech. Trans.
,
40
(
11
), pp.
1
7
.
35.
Zhang
,
A.
,
Wang
,
J.
,
Han
,
Y.
,
Zhang
,
J.
, and
Liu
,
Y.
,
2022
, “
Effect of Pin Generatrix on the EHL Performance of Pin-Bush Pair in Industrial Roller Chains
,”
Proc. Inst. Mech. Eng., Part J, J. Eng. Tribol.
,
236
(
8
), pp.
1545
1553
.
36.
Zhang
,
A.
,
Zhang
,
M.
,
Wang
,
J.
,
Zhang
,
J.
,
Shang
,
Z.
,
Liu
,
Y.
, and
Dai
,
L.
,
2021
, “
Experimental Study of Pin Surface Precision on Lubrication Behavior of Pin-Bush Pairs in Industrial Roller Chains
,”
Ind. Lubr. Tribol.
,
73
(
5
), pp.
765
774
.
37.
Peiran
,
Y.
, and
Shizhu
,
W.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
38.
Yang
,
P. R.
,
1998
,
Numerical Analysis of Fluid Lubrication
,
National Defense Industry Press
,
Beijing
.
39.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
New York
.
You do not currently have access to this content.