Abstract

In many devices and applications, electrical contacts are exposed to vibrations, sliding, or rolling conditions and are prone to fretting-based degradation. Thus, lubricants are often employed in such contacts to reduce sliding wear and fretting corrosion. However, due to the non-conductive behavior of the lubricants with fluorocarbons and hydrocarbons, lubricants lead to a few adverse problems. Also, the fluid dynamics upon excitation, vibration, or sliding causes extended breaks or gaps in between the conducting surfaces. In reality, this can be noticed during vibrations occurring as a result of earthquakes or technical personnel maintenance. This could also have applications to electrified rolling element bearings. Factors such as surface roughness and fluid viscosity will determine the time taken for the two surfaces of the connectors to separate from a solid conductive contact. In this work, a coupled structural–fluid theoretical model is developed for evaluating such intermittent contact breaks/gaps when two metallic rough surfaces in contact are under vibrations. The model is capable of predicting the increase in the fluid film as well as the contact resistance change with time due to the possible connector vibration. The experimentally observed rocking vibration mode seen in connectors and the time-dependent squeeze film lubrication effect are also considered.

References

1.
Angadi
,
S. V.
,
Wilson
,
W. E.
,
Jackson
,
R. L.
,
Flowers
,
G. T.
, and
Rickett
,
B. I.
,
2008
, “
A Multi-Physics Finite Element Model of an Electrical Connector Considering Rough Surface
Contact
,”
2008 Proceedings of the 54th IEEE Holm Conference on Electrical Contacts
,
Orlando, FL
,
Oct. 27–29
, pp.
168
177
.
2.
Xie
,
F.
,
Flowers
,
G. T.
,
Chen
,
C.
,
Bozack
,
M. J.
,
Suhling
,
J. C.
,
Rickett
,
B. I.
,
Malucci
,
R. D.
, and
Manlapaz
,
C.
,
2009
, “
Analysis and Prediction of Vibration-Induced Fretting Motion in a Blade/Receptacle Connector Pair
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
32
(
3
), pp.
585
592
.
3.
Fu
,
R.
,
Choe
,
S.-Y.
,
Jackson
,
R. L.
,
Flowers
,
G. T.
, and
Kim
,
D.
,
2012
, “
Modeling and Analysis of Vibration-Induced Changes in Connector Resistance of High Power Electrical Connectors for Hybrid Vehicles
,”
Mech. Based Des. Struct. Mach.
,
40
(
3
), pp.
349
365
.
4.
Chudnovsky
,
B. H.
,
2019
,
Lubrication of Electrical and Mechanical Components in Electric Power Equipment
,
CRC Press
,
Boca Raton, FL
.
5.
Flowers
,
G. T.
,
Xie
,
F.
,
Bozack
,
M. J.
, and
Malucci
,
R. D.
,
2004
, “
Vibration Thresholds for Fretting Corrosion in Electrical Connectors
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
27
(
1
), pp.
65
71
.
6.
Flowers
,
G. T.
,
Xie
,
F.
,
Bozack
,
M.
,
Horvath
,
R.
,
Rickett
,
B. I.
, and
Malucci
,
R. D.
,
2005
, “
The Influence of Contact Interface Characteristics on Vibration-Induced Fretting Degradation
,”
Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts
,
Chicago, IL
,
Sept. 26–28
, pp.
82
88
.
7.
Yang
,
H.
, and
Flowers
,
G.
,
2015
, “
Fretting in Electrical Connectors Induced by Axial Vibration
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
5
(
3
), pp.
328
336
.
8.
Malucci
,
R. D.
,
2003
, “
Fretting Corrosion Degradation, Threshold Behavior and Contact Instability [Electrical Contacts]
,”
Proceedings of the Forty-Ninth IEEE Holm Conference on Electrical Contacts
,
Washington, DC
,
Sept. 10
, pp.
2
15
.
9.
Flowers
,
G. T.
,
Xie
,
F.
,
Bozack
,
M. J.
,
Horvath
,
R.
,
Malucci
,
R. D.
, and
Rickett
,
B. I.
,
2005
, “
Modeling Early Stage Fretting of Electrical Connectors Subjected to Random Vibration
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
28
(
4
), pp.
721
727
.
10.
Chen
,
C.
,
Flowers
,
G. T.
,
Bozack
,
M.
, and
Suhling
,
J. C.
,
2009
, “
A Study on Vibration-Induced Fretting Degradation in Connector Systems
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
821
826
.
11.
Yang
,
H.
, and
Flowers
,
G.
,
2013
, “
Threshold of Axial Vibration Induced Fretting in Electrical Connectors
,”
2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013)
,
Newport, RI
,
Sept. 22–25
, pp.
1
10
.
12.
Jackson
,
R. L.
,
2012
, “Chapter 14: Lubrication,”
Handbook of Lubrication and Tribology, Volume II: Theory and Design
,
CRC Press
,
Boca Raton, FL
, pp.
14.1
14.14
.
13.
Johnson
,
K. L.
,
2003
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
14.
Campbell
,
W.
,
1978
, “
The Lubrication of Electrical Contacts
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
1
(
1
), pp.
4
16
.
15.
Chudnovsky
,
B. H.
,
2005
, “
Lubrication of Electrical Contacts
,”
Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts
,
Chicago, IL
,
Sept. 26–28
, pp.
107
114
.
16.
Sawa
,
K.
,
Watanabe
,
Y.
, and
Ueno
,
T.
,
2014
, “
Effect of Lubricant on Sliding Conditions in Au-Plated Slip-Ring System for Small Electric Power Transfer
,”
Proceedings of the 2014 IEEE 60th Holm Conference on Electrical Contacts (Holm)
,
New Orleans, LA
,
Oct. 12–15
, pp.
1
6
.
17.
Sawa
,
K.
,
Takemasa
,
Y.
,
Watanabe
,
Y.
,
Ueno
,
T.
, and
Yamanoi
,
M.
,
2015
, “
Fluctuation Components of Contact Voltage at AgPd Brush and Au-Plated Slip-Ring System With Lubricant
,”
Proceedings of the 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm)
,
San Diego, CA
,
Oct. 11–14
, pp.
250
255
.
18.
Jackson
,
R. L.
,
Coker
,
A. B.
,
Tucker
,
Z.
,
Hossain
,
M. S.
, and
Mills
,
G.
,
2019
, “
An Investigation of Silver-Nanoparticle-Laden Lubricants for Electrical Contacts
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
2
), pp.
193
200
.
19.
Crilly
,
L.
,
Jackson
,
R. L.
,
Bond
,
S.
,
Mills
,
G.
, and
Bhargava
,
S.
,
2020
, “
An Investigation of the Electrical Contact Resistance Change, Lubrication, and Wear Properties of a Nanolubricant
,”
Proceedings of the 2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM)
,
San Antonio, TX
,
Sept. 30–Oct. 7
, pp.
1
7
.
20.
Cao
,
Z.
,
Xia
,
Y.
,
Liu
,
L.
, and
Feng
,
X.
,
2019
, “
Study on the Conductive and Tribological Properties of Copper Sliding Electrical Contacts Lubricated by Ionic Liquids
,”
Tribol. Int.
,
130
, pp.
27
35
.
21.
Ko
,
S. D.
,
Seo
,
M. H.
,
Yoon
,
Y. H.
,
Han
,
C. H.
,
Lim
,
K. S.
,
Kim
,
C. K.
, and
Yoon
,
J. B.
,
2017
, “
Investigation of the Nanoparticle Electrical Contact Lubrication in MEMS Switches
,”
J. Microelectromech. Syst.
,
26
(
6
), pp.
1417
1427
.
22.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2014
, “
Graphene as a Protective Coating and Superior Lubricant for Electrical Contacts
,”
Appl. Phys. Lett.
,
105
(
23
), p.
231907
.
23.
Achanta
,
S.
, and
Drees
,
D.
,
2008
, “
Effect of Lubrication on Fretting Wear and Durability of Gold Coated Electrical Contacts Under High Frequency Vibrations
,”
Tribol. - Mater. Surf. Interfaces
,
2
(
1
), pp.
57
63
.
24.
Swingler
,
J.
,
2000
, “
The Automotive Connector: The Influence of Powering and Lubricating a Fretting Contact Interface
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
214
(
6
), pp.
615
623
.
25.
Graton
,
O.
,
Fouvry
,
S.
,
Enquebecq
,
R.
, and
Petit
,
L.
,
2018
, “
Effect of Lubrication on DC and RF Electrical Endurance of Gold Plated Contacts Subjected to Fretting Wear
,”
Proceedings of the 2018 IEEE Holm Conference on Electrical Contacts
,
Albuquerque, NM
,
Oct. 14–18
, pp.
426
434
.
26.
Fu
,
Y.
,
Qin
,
H.
,
Xu
,
X.
,
Zhang
,
X.
, and
Guo
,
Z.
,
2021
, “
The Effect of Surface Texture and Conductive Grease Filling on the Tribological Properties and Electrical Conductivity of Carbon Brushes
,”
Tribol. Int.
,
153
, p.
106637
.
27.
Noël
,
S.
,
Brézard-Oudot
,
A.
,
Chrétien
,
P.
, and
Alamarguy
,
D.
,
2017
, “
Fretting Behaviour of Tinned Connectors Under Grease Lubrication
,”
Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts
,
Denver, CO
,
Sept. 10–13
, pp.
109
116
.
28.
Larsson
,
E.
,
Andersson
,
A. M.
, and
Rudolphi
,
ÅK
,
2017
, “
Grease Lubricated Fretting of Silver Coated Copper Electrical Contacts
,”
Wear
,
376–377
, pp.
634
642
.
29.
Amada
,
Y.
,
Sawa
,
K.
, and
Ueno
,
T.
,
2017
, “
Effects of Lubricant Oil on Sliding Contact Phenomena in Carbon Brush-Slip Ring System
,”
Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts
,
Denver, CO
,
Sept. 10–13
, pp.
109
116
.
30.
Chen
,
Y.
, and
Liang
,
H.
,
2020
, “
Tribological Evaluation of Electrical Resistance of Lubricated Contacts
,”
ASME J. Tribol.
,
142
(
11
), p.
114502
.
31.
Kaneko
,
S.
,
Taura
,
H.
,
Fukasawa
,
R.
, and
Kanai
,
H.
,
2016
, “
Lubrication Characteristics of Electric Sliding Contacts Consisting of Rotating Circular Grooved Disk and Stationary Rider With Spherical Surface Under Lubricated Condition
,”
ASME J. Tribol.
,
138
(
1
), p.
011705
.
32.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
World Scientific
,
Singapore
.
33.
Angadi
,
S. V.
,
Jackson
,
R. L.
,
Choe
,
S.-y.
,
Flowers
,
G. T.
,
Lee
,
B.-Y.
, and
Zhong
,
L.
,
2012
, “
A Multiphysics Finite Element Model of a 35A Automotive Connector Including Multiscale Rough Surface Contact
,”
ASME J. Electron. Packag.
,
134
(
1
), p.
011001
.
34.
Angadi
,
S. V.
,
Jackson
,
R. L.
,
Pujar
,
V.
, and
Tushar
,
M. R.
,
2020
, “
A Comprehensive Review of the Finite Element Modeling of Electrical Connectors Including Their Contacts
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
10
(
5
), pp.
836
844
.
35.
Polchow
,
J. R.
,
Angadi
,
S. V.
,
Jackson
,
R. L.
,
Choe
,
S. Y.
,
Flowers
,
G. T.
,
Lee
,
B. Y.
, and
Zhong
,
L.
,
2010
, “
A Multi-Physics Finite Element Analysis of Round Pin High Power Connectors
,”
2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts
,
Charleston, SC
,
Oct. 4–7
,
IEEE
, pp.
1
9
.
36.
Kogut
,
L.
, and
Etsion
,
I.
,
2000
, “
Electrical Conductivity and Friction Force Estimation in Compliant Electrical Connectors
,”
Tribol. Trans.
,
43
(
4
), pp.
816
822
.
37.
Leidner
,
M.
,
Schmidt
,
H.
,
Myers
,
M.
, and
Schlaak
,
H.
,
2010
, “
A new Simulation Approach to Characterizing the Mechanical and Electrical Qualities of a Connector Contact
,”
Euro. Phys. J.-Appl. Phys.
,
49
(
2
), p.
22909
.
38.
Liu
,
H.
,
Leray
,
D.
,
Colin
,
S.
,
Pons
,
P.
, and
Broué
,
A.
,
2012
, “
Finite Element Based Surface Roughness Study for Ohmic Contact of Microswitches
,”
Proceedings of the 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm)
,
Portland, OR
,
Sept. 23–26
,
IEEE
, pp.
1
10
.
39.
Israel
,
T.
,
Gatzsche
,
M.
,
Schlegel
,
S.
,
Großmann
,
S.
,
Kufner
,
T.
, and
Freudiger
,
G.
,
2017
, “
The Impact of Short Circuits on Contact Elements in High Power Applications
,”
Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts
,
Denver, CO
,
Sept. 10–13
, pp.
40
49
.
40.
Chen
,
W. W.
,
Wang
,
Q. J.
, and
Kim
,
W.
,
2009
, “
Transient Thermomechanical Analysis of Sliding Electrical Contacts of Elastoplastic Bodies, Thermal Softening, and Melting Inception
,”
ASME J. Tribol.
,
131
(
2
), p.
021406
.
41.
Hennessy
,
R. P.
,
McGruer
,
N. E.
, and
Adams
,
G. G.
,
2012
, “
Modeling of a Thermal-Electrical-Mechanical Coupled Field Contact
,”
ASME J. Tribol.
,
134
(
4
), p.
041402
.
42.
Mahajan
,
M.
,
Jackson
,
R. L.
, and
Flowers
,
G. T.
,
2008
, “
Experimental and Analytical Investigation of a Dynamic Gas Squeeze Film Bearing Including Asperity Contact Effects
,”
Tribol. Trans.
,
51
(
1
), pp.
57
67
.
43.
Kim
,
S. J.
,
Dean
,
R.
,
Jackson
,
R. L.
, and
Flowers
,
G. T.
,
2011
, “
An Investigation of the Damping Effects of Various Gas Environments on a Vibratory MEMS Device
,”
Tribol. Int.
,
44
(
2
), pp.
125
133
.
44.
Sudeep
,
U.
,
Pandey
,
R. K.
, and
Tandon
,
N.
,
2013
, “
Effects of Surface Texturing on Friction and Vibration Behaviors of Sliding Lubricated Concentrated Point Contacts Under Linear Reciprocating Motion
,”
Tribol. Int.
,
62
, pp.
198
207
.
45.
Vladescu
,
S.
,
Olver
,
A. V.
,
Pegg
,
I. G.
, and
Reddyhoff
,
T.
,
2015
, “
The Effects of Surface Texture in Reciprocating Contacts—An Experimental Study
,”
Tribol. Int.
,
82
, pp.
28
42
.
46.
Pan
,
F.
,
Kubby
,
J.
,
Peeters
,
E.
,
Tran
,
A. T.
, and
Mukherjee
,
S.
,
1998
, “
Squeeze Film Damping Effect on the Dynamic Response of a MEMS Torsion Mirror
,”
J. Micromech. Microeng.
,
8
(
3
), pp.
200
208
.
47.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2003
, “
A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
,
14
(
2
), pp.
170
181
.
48.
Bao
,
M.
,
Yang
,
H.
,
Sun
,
Y.
, and
French
,
P. J.
,
2003
, “
Modified Reynolds’ Equation and Analytical Analysis of Squeeze-Film Air Damping of Perforated Structures
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
795
800
.
49.
Zhang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2020
, “
A Mixed Lubrication Analysis of a Thrust Bearing With Fractal Rough Surfaces
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
234
(
4
), pp.
608
621
.
50.
Zhang
,
X.
, and
Jackson
,
R. L.
,
2021
, “
A Mixed Lubrication Analysis of a Flat-Land Thrust Bearing With a Surface Optimisation Method
,”
Lubr. Sci.
,
33
(
6
), pp.
335
346
.
51.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
The Behavior of Thrust Washer Bearings Considering Mixed Lubrication and Asperity Contact
,”
Tribol. Trans.
,
49
(
2
), pp.
233
247
.
52.
Jackson
,
R. L.
, and
Green
,
I.
,
2008
, “
The Thermoelastic Behavior of Thrust Washer Bearings Considering Mixed Lubrication, Asperity Contact, and Thermoviscous Effects
,”
Tribol. Trans.
,
51
(
1
), pp.
19
32
.
53.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
(
1
), pp.
12
17
.
54.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
(
2
), pp.
220
230
.
55.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Trib. Int.
,
39
(
9
), pp.
906
914
.
56.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
57.
Front
,
I.
,
1990
, “
The Effects of Closing Force and Surface Roughness on Leakage in Radial Face Seals
,”
MS thesis
,
Technion, Israel Institute of Technology
,
Haifa, Israel
.
58.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
264
270
.
59.
An
,
B.
,
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Deterministic Elastic-Plastic Modelling of Rough Surface Contact Including Spectral Interpolation and Comparison to Theoretical Models
,”
Tribol. Int.
,
135
, pp.
246
258
.
60.
Ruan
,
B.
,
Salant
,
R. F.
, and
Green
,
I.
,
1997
, “
A Mixed Lubrication Model of Liquid/Gas Mechanical Face Seals
,”
Tribol. Trans.
,
40
(
4
), pp.
647
657
.
61.
Varney
,
P.
, and
Green
,
I.
,
2017
, “
Impact Phenomena in a Noncontacting Mechanical Face Seal
,”
ASME J. Tribol.
,
139
(
2
), p.
022201
.
62.
Lebeck
,
A.
,
1999
, “
Mixed Lubrication in Mechanical Face Seals With Plain Faces
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
213
(
3
), pp.
163
175
.
63.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1998
, “
Static Sealing Performance of Gas Mechanical Seals Including Surface Roughness and Rarefaction Effects
,”
Tribol. Trans.
,
41
(
4
), pp.
531
536
.
64.
Masjedi
,
M.
, and
Khonsari
,
M.
,
2014
, “
Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact EHL of Rough Surfaces
,”
Tribol. Int.
,
70
, pp.
179
189
.
65.
Davis
,
C. L.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
,
1999
, “
A Simplified Approach to Modeling Thermal Effects in Wet Clutch Engagement: Analytical and Experimental Comparison
,”
ASME J. Tribol.
,
122
(
1
), pp.
110
118
.
66.
Buckley
,
D.
,
1975
, “
Friction and Wear of Tin and Tin Alloys From Minus 100 C to 150 C
,” Document ID: 19750018021 Accession Number: 75N26093 Report/Patent Number: NASA-TN-D-8004.
67.
Holm
,
R.
,
1967
,
Electric Contacts
,
Springer
,
New York
.
68.
Cooper
,
M.
,
Mikic
,
B.
, and
Yovanovich
,
M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
69.
Greenwood
,
J. A.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
70.
Shi
,
X.
, and
Zou
,
Y.
,
2018
, “
A Comparative Study on Equivalent Modeling of Rough Surfaces Contact
,”
ASME J. Tribol.
,
140
(
4
), p.
041402
.
71.
Randall
,
R. B.
,
2021
,
Vibration-Based Condition Monitoring: Industrial, Automotive and Aerospace Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
72.
Bergé
,
P.
,
Pomeau
,
Y.
, and
Vidal
,
C.
,
1987
,
Order Within Chaos
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.