Abstract

Determining the friction and wear behaviors of aero-engine key components under realistic conditions is important to improve their long-term reliability and service life. In this paper, the friction and wear behaviors of different bushing materials in the variable stator vane (VSV) system were investigated through the basic pin-on-disc test and actual shaft-bushing test. Different machine learning (ML) models were established based on the experimental information to predict the coefficient of friction (COF) and wear-rate. The results indicated that there is a significant temperature warning line for the wear amount of the polyimide material, while the high-temperature alloy material exhibited stable tribological performance under experimental load and temperature conditions. ML analysis indicated that the extreme gradient boosting (XGB) outperformed other ML algorithms in predicting the COF (R2 value = 0.956), while the kernel ridge regression (KRR) produced the best performance for predicting the wear-rate (R2 value = 0.997). The tribo-informatics research for bushings in the VSV system can accelerate the structural optimization and material selection and support the evaluation of new structures and materials.

References

1.
Magin
,
P.
,
Danner
,
F.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2019
, “
High Pressure Compressor Aerodynamic Performance at Uncertain Boundary Conditions
,”
Proceedings of ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
, Vol. 58578.
2.
Gottschall
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2012
, “
The Effect of Two Different Endwall-Penny Concepts for Variable Stator Vanes in a Compressor Cascade
,”
Proceedings of ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, Vol. 44748, pp.
83
93
.
3.
Gottschall
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2012
, “
The Effect of Four Part Gap Geometry Configurations for Variable Stator Vanes in a Compressor Cascade
,”
Proceedings of ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, Vol. 44748, pp.
501
510
.
4.
Janssen
,
J.
,
Pohl
,
D.
,
Jeschke
,
P.
,
Halcoussis
,
A.
,
Hain
,
R.
, and
Fuchs
,
T.
,
2022
, “
Effect of an Axially Tilted Variable Stator Vane Platform on Penny Cavity and Main Flow
,”
ASME J. Turbomach.
,
144
(
2
), p.
021010
.
5.
Pohl
,
D.
,
Janssen
,
J.
,
Jeschke
,
P.
,
Halcoussis
,
A.
, and
Wolf
,
H.
,
2020
, “
Variable Stator Vane Penny Gap Aerodynamic Measurements and Numerical Analysis in an Annular Cascade Wind Tunnel
,”
Int. J. Gas Turbine
,
11
(
2
), pp.
44
55
.
6.
Chen
,
S.
,
Yin
,
N.
,
Yu
,
Q.
, and
Zhang
,
Z.
,
2019
, “
A Novel Tribometer for Investigating Bushing Wear
,”
Wear
,
430–431
, pp.
263
271
.
7.
Wollmann
,
T.
,
Nitschke
,
S.
,
Klauke
,
T.
,
Behnisch
,
T.
,
Ebert
,
C.
,
Füßel
,
R.
,
Modler
,
N.
, and
Gude
,
M.
,
2022
, “
Investigating the Friction, Wear and Damage Behaviour of Plain Bearing Bushes of the Variable Stator Vane System
,”
Tribol. Int.
,
165
, p.
107280
.
8.
von der Bank
,
R.
,
Donnerhack
,
S.
,
Rae
,
A.
,
Poutriquet
,
F.
,
Lundbladh
,
A.
,
Antoranz
,
A.
,
Tarnowski
,
L.
, and
Ruzicka
,
M.
,
2016
, “
Compressors for Ultra-High-Pressure-Ratio Aero-Engines
,”
CEAS Aeronaut. J.
,
7
(
3
), pp.
455
470
.
9.
Gutknecht
,
J.
,
Bruce
,
R.
,
Cornell
,
J.
,
Slavik
,
D.
,
Bowen
,
W.
, and
Dingwell
,
W.
,
2007
, “
Variable Stator Vane Assembly of Gas Turbine Engine, Has Wear-Resistant Coatings in Metal Bushing and Ceramic Portion of Trunnion Arranged in Through Hole Extending Between Surfaces of Compressor Casing of Gas Turbine Engine
,” U.S. Patent No. 7,445,427.
10.
Schilling
,
J.
,
2008
, “
Variable Vane Stator Assembly for Gas Turbine Engine Used in e.g., Aircraft Engine, Industrial Powerplant, Has Rotating Mechanism Which Incrementally Rotates Bushing to New Circumferential Position Relative to Vane Spindle
,” U.S. Patent No. 8,517,661.
11.
Williamson
,
A.
, and
Jarrett
,
H.
,
2016
, “
Bushing for Use in a Stator Vane Assembly of a Compressor for a Rotary Machine, Comprises an Annular Body and Is Configured to be Removable From the Stator Vane Assembly, Where Annular Body Defines a Key Portion
,” U.S. Patent No. 10,047,765.
12.
Striebing
,
D.
,
Stanford
,
M.
,
DellaCorte
,
C.
, and
Rossi
,
A. M.
,
2007
, “
Tribological Performance of PM300 Solid Lubricant Bushings for High Temperature Applications
,” NASA/TM, 214819.
13.
Cao
,
J.
,
Yin
,
Z. W.
,
Li
,
H. L.
, and
Gao
G. Y.
,
2017
, “
Research Progresses and Suggestions of Manufacturing Technologies of Engine Bearing Bushes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
272
(
1
), p.
012005
.
14.
Litwin
,
W.
, and
Dymarski
,
C.
,
2016
, “
Experimental Research on Water-Lubricated Marine Stern Tube Bearings in Conditions of Improper Lubrication and Cooling Causing Rapid Bush Wear
,”
Tribol. Int.
,
95
, pp.
449
455
.
15.
Olvera-Tapia
,
O.
,
Kussul
,
E.
,
Rodríguez-Lelis
,
J.
,
Baidyk
,
T.
, and
Sanchez
,
J.
,
2016
, “
Effect of Bushing Miniaturization on the Static Friction Coefficient
,”
J. Test. Eval.
,
44
(
4
), pp.
1558
1567
.
16.
Regis
,
A.
,
Linares
,
J.
,
Arroyave-Tobón
,
S.
, and
Mermoz
,
E.
,
2022
, “
Numerical Model to Predict Wear of Dynamically Loaded Plain Bearings
,”
Wear
,
508–509
, p.
204467
.
17.
Schmidt
,
A.
,
Schmidt
,
T.
,
Grabherr
,
O.
, and
Bartel
,
D.
,
2018
, “
Transient Wear Simulation Based on Three-Dimensional Finite Element Analysis for a Dry Running Tilted Shaft-Bushing Bearing
,”
Wear
,
408–409
, pp.
171
179
.
18.
Colbert
,
R.
,
Alvarez
,
L.
,
Hamilton
,
M.
,
Steffens
,
J. G.
,
Ziegert
,
J. C.
,
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2010
, “
Edges, Clearances, and Wear: Little Things That Make Big Differences in Bushing Friction
,”
Wear
,
268
(
1–2
), pp.
41
49
.
19.
Kurdi
,
A.
,
Kan
,
W.
, and
Chang
,
L.
,
2019
, “
Tribological Behaviour of High Performance Polymers and Polymer Composites at Elevated Temperature
,”
Tribol. Int.
,
130
, pp.
94
105
.
20.
Chen
,
S.
,
Li
,
J.
,
Wei
,
L.
,
Jin
,
Y.
,
Shang
,
H.
,
Hua
,
M.
, and
Duan,
H.
,
2017
, “
Tribological Properties of Polyimide-Modified UHMWPE for Bushing Materials of Seawater Lubricated Sliding Bearings
,”
Tribol. Int.
,
115
, pp.
470
476
.
21.
Lv
,
M.
,
Zheng
,
F.
,
Wang
,
Q.
,
Wang
,
T.
, and
Liang
,
Y.
,
2015
, “
Friction and Wear Behaviors of Carbon and Aramid Fibers Reinforced Polyimide Composites in Simulated Space Environment
,”
Tribol. Int.
,
92
, pp.
246
254
.
22.
Rosenkranz
,
A.
,
Marian
,
M.
,
Profito
,
F.
,
Aragon
,
N.
, and
Shah
,
R.
,
2020
, “
The Use of Artificial Intelligence in Tribology—A Perspective
,”
Lubricants
,
9
(
1
), p.
2
.
23.
Ciulli
,
E.
,
2019
, “
Tribology and Industry: From the Origins to 4.0
,”
Front. Mech. Eng.
,
5
, p.
55
.
24.
Zhang
,
Z.
,
Yin
,
N.
,
Chen
,
S.
, and
Liu
,
C.
,
2021
, “
Tribo-Informatics: Concept, Architecture, and Case Study
,”
Friction
,
9
(
3
), pp.
642
655
.
25.
Yin
,
N.
,
Xing
,
Z.
,
He
,
K.
, and
Zhang
,
Z.
,
2023
, “
Tribo-Informatics Approaches in Tribology Research: A Review
,”
Friction
,
11
(
1
), pp.
1
22
.
26.
Mokhtari
,
N.
,
Pelham
,
J.
,
Nowoisky
,
S.
,
Bote-Garcia
,
J.-L.
, and
Gühmann,
C.
,
2020
, “
Friction and Wear Monitoring Methods for Journal Bearings of Geared Turbofans Based on Acoustic Emission Signals and Machine Learning
,”
Lubricants
,
8
(
3
), p.
29
.
27.
Nugraha
,
R.
,
Chen
,
S.
,
Yin
,
N.
,
Wu
,
T.
, and
Zhang
,
Z.
,
2021
, “
Running-In Real-Time Wear Generation Under Vary Working Condition Based on Gaussian Process Regression Approximation
,”
Measurement
,
181
, p.
109599
.
28.
Partovi
,
A.
,
Wang
,
H.
,
Sadeghi
,
B.
, and
Wu
,
P.
,
2023
, “
A Machine Learning Approach for Determination of Coefficient of Friction From Ring Compression Test
,”
Tribol. Int.
,
180
, p.
108198
.
29.
Hasan
,
M.
,
Wong
,
T.
,
Rohatgi
,
P.
, and
Nosonovsky
,
M.
,
2022
, “
Analysis of the Friction and Wear of Graphene Reinforced Aluminum Metal Matrix Composites Using Machine Learning Models
,”
Tribol. Int.
,
170
, p.
107527
.
30.
Harsha
,
A.
, and
Nagesh
,
D.
,
2007
, “
Prediction of Weight Loss of Various Polyaryletherketones and Their Composites in Three-Body Abrasive Wear Situation Using Artificial Neural Networks
,”
J. Reinf. Plast. Compos.
,
26
(
13
), pp.
1367
1377
.
31.
Abdelbary
,
A.
,
Abouelwafa
,
M.
, and
El Fahham
,
I.
,
2014
, “
Evaluation and Prediction of the Effect of Load Frequency on the Wear Properties of Pre-Cracked Nylon 66
,”
Friction
,
2
(
3
), pp.
240
254
.
32.
Nugraha
,
R.
,
He
,
K.
,
Liu
,
A.
, and
Zhang
,
Z.
,
2023
, “
Short-Term Cross-Sectional Time-Series Wear Prediction by Deep Learning Approaches
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021007
.
33.
Hasan
,
M.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
34.
Hasan
,
M.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2021
, “
Triboinformatic Modeling of Dry Friction and Wear of Aluminum Base Alloys Using Machine Learning Algorithms
,”
Tribol. Int.
,
161
, p.
107065
.
35.
Deliwala
,
A.
,
Dubey
,
K.
, and
Yerramalli
,
C.
,
2022
, “
Predicting the Erosion Rate of Uni-directional Glass Fiber Reinforced Polymer Composites Using Machine-Learning Algorithms
,”
ASME J. Tribol.
,
144
(
9
), p.
091707
.
You do not currently have access to this content.