Abstract

To reveal the effect of carbon content on tribological performance of coatings, TiAlC films having four different amounts of carbon content were synthesized using DC pulse magnetron sputtering. The amount of carbon was varied by using different graphite target powers of 400, 450, 500, and 550 W while keeping the TiAl target power fixed at 80 W. Sliding friction and wear behavior of TiAlC nanostructured coatings deposited on Si (100) substrates by (DC) pulse magnetron sputtering was examined against steel ball using a ball on disk configuration’ at a load of 1 N and sliding speed of 7 mm/s. The coating deposited at 500 W graphite target power attained a hardness of 20.24 GPa and elastic modulus of 246 GPa. Tribological test results indicate that the coating deposited at (500 W, 25 at% C) has the lowest coefficient of friction (COF) of 0.29 as well as the wear-rate of 6.52 × 10−13 (mm3/Nm). The observed behavior has been attributed to the increase in crystalline nano graphite phase, increase in compactness of coating, and the formation of compact oxide layer. The nano indentation statistics showed that resistance to plastic deformation (H3/E*2) and elastic strain to failure (H/E*) increased with the increasing target power and reached the highest value at (500 W, 25 at%C) in TiAlC films.

References

1.
Balasubramanyam
,
N.
,
Prasanthi
,
G.
, and
Yugandhar
,
M.
,
2015
, “
Study of Coated TiN and TiC on Cutting Tools for the PVD and CVD Coated Tungsten Carbide by Sand Blasting Pretreatment of Nickel and Carbon
,”
Int. J. Adv. Sci. Technol.
,
75
(
2
), pp.
51
58
.
2.
Recco
,
A. A. C.
,
Oliveira
,
I. C.
,
Massi
,
M.
,
Maciel
,
H. S.
, and
Tschiptschin
,
A. P.
,
2007
, “
Adhesion of Reactive Magnetron Sputtered TiNx and TiCy Coatings to AISI H13 Tool Steel
,”
Surf. Coat. Technol.
,
202
(4–7), pp.
1078
1083
.
3.
Wang
,
Y.
,
Li
,
Z.
,
Du
,
J.
,
Hua
,
Y.
, and
Wang
,
B.
,
2011
, “
(Ti,Al,Si,C)N Nanocomposite Coatings Synthesized by Plasma-Enhanced Magnetron Sputtering
,”
Appl. Surf. Sci.
,
258
(1), pp.
456
460
.
4.
Nowotny
,
V. H.
,
1971
, “
Structural Chemistry of Some Compounds of the Transition Metals With the Elements C, Si, Ge, Sn
,”
Prog. Solid State Chem.
,
5
, pp.
27
70
.
5.
Barsoum
,
M. W.
, and
El-Raghy
,
T.
,
2001
, “
The MAX Phases: Unique new Carbide and Nitride Materials
,”
Am. Sci.
,
89
(
4
), pp.
334
343
.
6.
Wilhelmsson
,
O.
,
Palmquist
,
J.-P.
,
Lewin
,
E.
,
Emmerlich
,
J.
,
Eklund
,
P.
,
Persson
,
P. O. A.
,
Hogberg
,
H.
,
Li
,
S
,
Ahuja
,
R
,
Eriksson
,
O
,
Hultman
,
L
, and
Jansson
,
U
,
2006
, “
Deposition and Characterization of Ternary Thin Films Within the Ti-Al-C System by DC Magnetron Sputtering
,”
J. Cryst. Growth
,
291
, pp.
290
300
.
7.
Soldan
,
J.
,
Musil
,
J.
, and
Zeman
,
P.
,
2007
, “
Effect of Al Addition on Structure and Properties of Sputtered TiC Films
,”
Plasma Process. Polym.
,
4
(
S1
), pp.
S6
S10
.
8.
El-Awadi
,
G. A.
,
Abdel-Samad
,
S.
, and
Waheed
,
A. F.
,
2013
, “
Characterization and Properties of TiAlC Layer on Hard Metal Substrate WC/Co Deposited by Physical Vapor Deposition
,”
Arab J. Nucl. Sci. Appl.
,
46
(
4
), pp.
195
202
.
9.
Zehnder
,
T.
,
Schwaller
,
P.
,
Munnik
,
F.
,
Mikhailov
,
S.
, and
Patscheider
,
J.
,
2004
, “
Nanostructural and Mechanical Properties of Nanocomposite nc-TiC/a-C:H Films Deposited by Reactive Unbalanced Magnetron Sputtering
,”
J. Appl. Phys.
,
95
(
8
), pp.
4327
4334
.
10.
Guo
,
Q.
,
Guo
,
Y.
,
Guo
,
D.
,
Yang
,
Z.
,
Li
,
J.
,
Yang
,
W.
,
Yang
,
Y.
,
Gao
,
P.
, and
Bai
,
Y.
,
2020
, “
Microstructure and Properties of the Cp/AlSn Coatings Deposited by Magnetron Sputtering/Multi-Arc Ion Plating
,”
Surf. Coat. Technol.
,
384
, p.
125303
.
11.
Zhang
,
X.
,
Jiang
,
J.
,
Zeng
,
Y.
,
Lin
,
J.
,
Wang
,
F.
, and
Moore
,
J. J.
,
2008
, “
Effect of Carbon on TiAlCN Coatings Deposited by Reactive Magnetron Sputtering
,”
Surf. Coat. Technol.
,
203
(5–7), pp.
594
597
.
12.
Chen
,
R.
,
Tu
,
J. P.
,
Liu
,
D. G.
,
Mai
,
Y. J.
, and
Gu
,
C. D.
,
2011
, “
Microstructure, Mechanical and Tribological Properties of TiCN Nanocomposite Films Deposited by DC Magnetron Sputtering
,”
Surf. Coat. Technol.
,
205
(21–22), pp.
5228
5234
.
13.
Raman
,
K. H. T.
,
Kiran
,
M. S. R. N.
,
Ramamurthy
,
U.
, and
Rao
,
M. G.
,
2012
, “
Structure and Mechanical Properties of Ti-C Films Deposited Using Combination of Pulsed DC and Normal DC Magnetron Co-Sputtering
,”
Appl. Surf. Sci.
,
258
(22), pp.
8629
8635
.
14.
Arnell
,
R. D.
,
Kelly
,
P. J.
, and
Bradley
,
J. W.
,
2004
, “
Recent Developments in Pulsed Magnetron Sputtering
,”
Surf. Coat. Technol.
,
188
, pp.
158
163
.
15.
Gulbinski
,
W.
,
Mathur
,
S.
,
Shen
,
H.
,
Suszko
,
T.
,
Gilewicz
,
A.
, and
Warcholinski
,
B.
,
2005
, “
Evaluation of Phase, Composition, Microstructure and Properties in TiC/a-C:H Thin Films Deposited by Magnetron Sputtering
,”
Appl. Surf. Sci.
,
239
(3–4), pp.
302
310
.
16.
Wang
,
H.
,
Zhang
,
S.
,
Li
,
Y.
, and
Sun
,
D.
,
2008
, “
Bias Effect on Microstructure and Mechanical Properties of Magnetron Sputtered Nanocrystalline Titanium Carbide Thin Films
,”
Thin Solid Films
,
516
(16), pp.
5419
5423
.
17.
Barshilia
,
H. C.
,
Ghosh
,
M.
,
Ramakrishna
,
R.
, and
Rajam
,
K. S.
,
2010
, “
Deposition and Characterization of TiAlSiN Nanocomposite Coatings Prepared by Reactive Pulsed Direct Current Unbalanced Magnetron Sputtering
,”
Appl. Surf. Sci.
,
256
(21), pp.
6420
6426
.
18.
Zhang
,
L.
, and
Koka
,
R. V.
,
1998
, “
A Study on the Oxidation and Carbon Diffusion of TiC in Alumina-Titanium Carbide Ceramics Using XPS and Raman Spectroscopy
,”
Mater. Chem. Phys.
,
57
(1), pp.
23
32
.
19.
Zhi-wen
,
X.
,
Lang-ping
,
W.
,
Xiao-feng
,
W.
,
Lei
,
H.
,
Yang
,
L.
, and
Jiu-chun
,
Y.
,
2011
, “
Influence of Si Content on Structure and Mechanical Properties of TiAlSiN Coatings Deposited by Multi-Plasma Immersion Ion Implantation and Deposition
,”
Trans. Nonferrous Metals Soc. China
,
21
, pp.
s476
s482
.
20.
Lindquist
,
M.
,
Wilhelmssonb
,
O.
,
Janssonb
,
U.
, and
Wiklund
,
U.
,
2009
, “
Tribofilm Formation and Tribological Properties of TiC and Nanocomposite TiAlC Coatings
,”
Wear
,
266
(3–4), pp.
379
387
.
21.
Shi
,
J. R.
,
Shi
,
X.
,
Sun
,
Z.
,
Liu
,
E.
,
Tay
,
B. K.
, and
Lau
,
S. P.
,
2000
, “
Ultraviolet and Visible Raman Studies of Nitrogenated Tetrahedral Amorphous Carbon Films
,”
Thin Solid Films
,
366
(1–2), pp.
169
174
.
22.
Barshilia
,
H. C.
, and
Rajam
,
K. S.
,
2004
, “
Nanoindentation and Atomic Force Microscopy Measurements on Reactively Sputtered TiN Coatings
,”
Bull. Mater. Sci.
,
27
(1), pp.
35
41
.
23.
Veprek
,
S.
,
Veprek-Heijman
,
M. G. T.
,
Karvankova
,
P.
, and
Prochazka
,
J.
,
2005
, “
Different Approaches to Superhard Coatings and Nanocomposites
,”
Thin Solid Films
,
476
(1), pp.
1
29
.
24.
Tomala
,
A.
, and
Pauschitz
,
A.
,
2013
, “
Nanotribology of Pulsed Direct Current Magnetron Sputtered Diamond Like Carbon Films
,”
Surf. Sci.
,
616
(
10
), pp.
60
70
.
25.
Jacobsohn
,
L. G.
,
Schulze
,
R. K.
,
Da Costa
,
M. M.
, and
Nastasi
,
M.
,
2004
, “
X-Ray Photoelectron Spectroscopy Investigation of Boron Carbide Films Deposited by Sputtering
,”
Surf. Sci.
,
572
(
11
), pp.
418
424
.
26.
Qian
,
J.
,
Li
,
S.
, and
Pu
,
J.
,
2019
, “
Effect of Heat Treatment on Structure and Properties of Molybdenum Nitride and Molybdenum Carbonitride Films Prepared by Magnetron Sputtering
,”
Surf. Coat. Technol.
,
374
(
9
), pp.
725
735
.
27.
Tsui
,
T. Y.
,
Pharr
,
G. M.
,
Oliver
,
W. C.
,
Bhatia
,
C. S.
,
White
,
R. L.
,
Anders
,
S.
,
Anders
,
A.
, and
Brown
,
I. G.
,
1995
, “
Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Disks
,”
Mater. Res. Soc. Symp. Proc.
,
383
, pp.
447
452
.
28.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(6), pp.
1564
1583
.
29.
Hammerstrom
,
L.
, and
Jacobson
,
S.
,
2008
, “
Designed High-Friction Surfaces-Influence of Roughness and Deformation of the Counter Surface
,”
Wear
,
266
(
9–10
), pp.
807
814
.
30.
Nieto
,
A.
,
Kumar
,
A.
,
Lahiri
,
D.
,
Zhang
,
C.
,
Seal
,
S.
, and
Agarwal
,
A.
,
2014
, “
Oxidation Behavior of Graphene Nanoplatelet Reinforced Tantalum Carbide Composites in High Temperature Plasma Flow
,”
Carbon
,
67
, pp.
398
408
.
31.
Cui
,
G.
,
Li
,
S.
,
Liu
,
H.
, and
Gao
,
G.
,
2019
, “
Effect of Carbon on the Microstructure and Sliding Wear Performance of CoCrMo Matrix Composites From Room Temperature to 1000 C
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
4778
4787
.
32.
Yousaf
,
M. I.
,
Pelenovich
,
V. O.
, and
Yang
,
B.
,
2015
, “
Influence of Substrate Rotation Speed on the Structure and Mechanical Properties of Nanocrystalline AlTiN/MoN Coatings Synthesized by Cathodic Arc Ion-Plating
,”
Surf. Coat. Technol.
,
265
(
3
), pp.
117
124
.
33.
Zhu
,
J.
,
Han
,
J.
,
Meng
,
S.
, et al
,
2003
, “
Correlations Between Substrate Bias, Microstructure and Surface Morphology of Tetrahedral Amorphous Carbon Films
,”
Vacuum
,
72
(
3
), pp.
285
290
.
34.
Sánchez-López
,
J. C.
,
Dominguez-Meister
,
S.
,
Rojas
,
T. C.
,
Colasuonno
,
M.
,
Bazzan
,
M.
, and
Patelli
,
A.
,
2018
, “
Tribological Properties of TiC/a-C:H Nanocomposite Coatings Prepared via HiPIMS
,”
Appl. Surf. Sci.
,
440
, pp.
458
466
.
35.
Vuchkov
,
T.
,
Evaristo
,
M.
,
Yaqub
,
T. B.
,
Polcar
,
T.
, and
Cavaleiro
,
A.
,
2020
, “
Synthesis, Microstructure and Mechanical Properties of W–S–C Self-Lubricant Thin Films Deposited by Magnetron Sputtering
,”
Tribol. Int.
,
150
, p.
106363
.
You do not currently have access to this content.