Abstract

Needle–tissue interactive force is vital for developing a virtual simulation and planning system (SPS) and optimizing needle control strategy, wherein the friction coefficient is an important parameter but difficult to pre-determine. The existing studies on friction coefficient estimation were lack of qualitative analysis and did not consider the effect of normal pressure and interactive velocity, which may lead to the inaccuracy of the friction calculation. In this paper, we proposed a novel semiempirical friction coefficient model based on the modified classical elastic friction theory that constructs the relationship between the friction coefficient and parameters such as the normal pressure and velocity. The proposed friction coefficient model is validated by using the computational inverse technique based on coupled finite element material point (CFEMP) contact algorithm. The results show that the friction coefficient between the needle and polyvinyl alcohol (PVA) tissue phantom varies from 0.091 to 0.242 with different normal pressure (7.95–17.80 kPa) and insertion velocity (1–9 mm/s), which agrees well with the experimental data. The results of the paper can help to better understand the intrinsic characteristics of the needle–tissue interactions and optimal needle actuation strategies.

References

1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.
2.
Takabi
,
B.
, and
Tai
,
B.
,
2017
, “
A Review of Cutting Mechanics and Modeling Techniques for Biological Materials
,”
Med. Eng. Phys.
,
45
, pp.
1
14
.
3.
Li
,
H.
,
Wang
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2021
, “
A Novel Manipulator With Needle Insertion Forces Feedback for Robot-Assisted Lumbar Puncture
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
17
(
2
), p.
e2226
.
4.
Mano
,
I.
,
Goshima
,
H.
,
Nambu
,
M.
, and
Iio
,
M.
,
2010
, “
New Polyvinyl Alcohol Gel Material for MRI Phantoms
,”
Magn. Reson. Med.
,
3
(
6
), pp.
921
926
.
5.
Surry
,
K. J. M.
,
Austin
,
H. J. B.
,
Fenster
,
A.
, and
Peters
,
T. M.
,
2004
, “
Polyvinyl Alcoholcryogel Phantoms for Use in Ultrasound and MR Imaging
,”
Phys. Med. Biol.
,
49
(
24
), pp.
5529
5546
.
6.
Jiang
,
S.
,
Liu
,
S.
, and
Feng
,
W.
,
2011
, “
Pva Hydrogel Properties for Biomedical Application
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1228
1233
.
7.
Podder
,
T.
, and
Clark
,
D,FD
,
2005
, “
Effects of Coating on Friction Force During Needle Insertion in Soft Materials
,”
Med. Phys.
,
32
(
7
), p.
2421
.
8.
Simone
,
C.
, and
Okamura
,
A.
,
2002
, “
Modeling of Needle Insertion Forces for Robot-Assisted Percutaneous Therapy
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, Vol. 2, pp.
2085
2091
.
9.
Kataoka
,
H.
,
Washio
,
T.
,
Chinzei
,
K.
,
Mizuhara
,
K.
,
Simone
,
C.
, and
Okamura
,
A.
,
2002
, “
Measurement of the Tip and Friction Force Acting on a Needle During Penetration
,”
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
,
Tokyo, Japan
,
Sept. 25–28
, Vol. 2488, pp.
216
223
.
10.
Hing
,
J.
,
Brooks
,
A.
, and
Desai
,
J.
,
2006
, “
Reality-Based Needle Insertion Simulation for Haptic Feedback in Prostate Brachytherapy
,”
Proceedings of 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
619
624
.
11.
Carra
,
A.
, and
Avila-Vilchis
,
J.
,
2010
, “
Needle Insertion Modeling Through Several Tissue Layers
,”
Proceedings of 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics
,
Wuhan, China
,
Mar. 6–7
, Vol. 1, pp.
237
240
.
12.
Assaad
,
W.
,
Jahya
,
A.
,
Moreira
,
P.
, and
Misra
,
S.
,
2015
, “
Finite-Element Modeling of a Bevel-Tipped Needle Interacting With Gel
,”
J. Mech. Med. Biol.
,
15
(
05
), pp.
23
1210
.
13.
Kong
,
X.
,
Zhou
,
P.
, and
Wu
,
C. W.
,
2011
, “
Numerical Simulation of Microneedles’ Insertion Into Skin
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
827
835
.
14.
Barnett
,
A.
,
Lee
,
Y.
, and
Moore
,
J.
,
2016
, “
Fracture Mechanics Model of Needle Cutting Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p. 011005.
15.
Gokgol
,
C.
,
Basdogan
,
C.
, and
Canadinc
,
D.
,
2012
, “
Estimation of Fracture Toughness of Liver Tissue: Experiments and Validation
,”
Med. Eng. Phys.
,
34
(
7
), pp.
882
891
.
16.
Oldfield
,
M.
,
Dini
,
D.
,
Giordano
,
G.
, and
Rodriguez
,
Y. B. F.
,
2013
, “
Detailed Finite Element Modelling of Deep Needle Insertions Into a Soft Tissue Phantom Using a Cohesive Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
5
), pp.
530
543
.
17.
Li
,
M.
,
Lei
,
Y.
,
Gao
,
D.
,
Hu
,
Y.
, and
Zhang
,
X.
,
2021
, “
A Novel Material Point Method (mpm) Based Needle-Tissue Interaction Model
,”
Comput. Methods Biomech. Biomed. Eng.
, pp.
1
15
.
18.
Urrea
,
F.
,
Casanova
,
F.
,
Orozco
,
G.
, and
García
,
J.
,
2016
, “
Evaluation of the Friction Coefficient, the Radial Stress, and the Damage Work During Needle Insertions Into Agarose Gels
,”
J. Mech. Behav. Biomed. Mater.
,
56
, pp.
98
105
.
19.
Li
,
W.
,
Zhou
,
P.
,
Lin
,
W.
,
Nteziyaremye
,
V.
,
Yamaguchi
,
H.
,
Guo
,
D.
, and
Shih
,
A.
,
2016
, “
Effects of Needle Inner Surface Topography on Friction and Biopsy Length
,”
Int. J. Mech. Sci.
,
119
, pp.
412
418
.
20.
Oldfield
,
M.
,
Dini
,
D.
,
Jaiswal
,
T.
, and
Rodriguez y Baena
,
F.
,
2013
, “
The Significance of Rate Dependency in Blade Insertions Into a Gelatin Soft Tissue Phantom
,”
Tribol. Int.
,
63
, pp.
226
234
.
21.
Fukushima
,
Y.
,
Saito
,
K.
, and
Naemura
,
K.
,
2013
, “
Estimation of the Cutting Force Using the Dynamic Friction Coefficient Obtained by Reaction Force During the Needle Insertion
,”
Procedia CIRP
,
5
(
1
), pp.
265
269
.
22.
Popov
,
V. L.
,
Voll
,
L.
,
Kusche
,
S.
,
Li
,
Q.
, and
Rozhkova
,
S. V.
,
2016
, “
Generalized Master Curve Procedure for Elastomer Friction Taking Into Account Dependencies on Velocity, Temperature and Normal Force
,”
Tribol. Int.
,
120
(
1
), pp.
376
380
.
23.
Li
,
M.
,
Lei
,
Y.
, and
Xu
,
T.
,
2020
, “
Sensitivity of Influential Factors on Needle Insertion Experiments: A Quantitative Analysis on Phantom Deformations and Needle Deflections
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
11
.
24.
Song
,
Y.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2020
, “
A Non-Penetration FEM-MPM Contact Algorithm for Complex Fluid-Structure Interaction Problems
,”
Comput. Fluids
,
213
(
12
), p.
104749
.
25.
Lian
,
Y.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2012
, “
An Adaptive Finite Element Material Point Method and Its Application in Extreme Deformation Problems
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
, pp.
275
285
.
26.
Lian
,
Y.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2011
, “
Coupling of Finite Element Method With Material Point Method by Local Multi-Mesh Contact Method
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
47–48
), pp.
3482
3494
.
27.
Sulsky
,
D.
,
Chen
,
Z.
, and
Schreyer
,
H. L.
,
1993
, “
A Particle Method for History-Dependent Materials
,”
Comput. Methods Appl. Mech. Eng.
,
118
(
1–2
), pp.
179
196
.
28.
Zhang
,
X.
,
Lian
,
Y.
,
Liu
,
Y.
, and
Zhou
,
X.
,
2016
,
The Material Point Method—A Continuum-Based Particle Method for Extreme Loading Cases
,
Tsinghua University Press
,
Beijing, China
.
29.
Ni
,
R.
, and
Zhang
,
X.
,
2020
, “
A Precise Critical Time Step Formula for the Explicit Material Point Method
,”
J. Numer. Methods Eng.
,
121
(
22
), pp.
4989
5016
.
30.
Liang
,
Y.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2019
, “
An Efficient Staggered Grid Material Point Method
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
85
109
.
31.
Ma
,
Z.
,
Zhang
,
X.
, and
Huang
,
P.
,
2010
, “
An Object-Oriented MPM Framework for Simulation of Large Deformation and Contact of Numerous Grains
,”
Comput. Model. Eng. Sci.
,
55
(
1
), pp.
61
87
.
You do not currently have access to this content.