Abstract

This paper describes a computationally efficient, finite element implementation of a generalized short bearing (GSB) formulation to account for mass conservation in cavitated bearing regions. The method is applied to a set of examples representing partial and full journal bearings under transient loads and kinematics. Bearing performance trends are captured well by the GSB formulation when compared with results obtained from a complete two-dimensional formulation and from experiments. The computational speed of the GSB formulation is approximately 40 to 200 times faster than the complete formulation for the examples provided in the paper.

References

1.
Braun
,
M. J.
, and
Hannon
,
W. M.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
224
(
9
), pp.
839
863
.
2.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Tech.
,
103
(
3
), pp.
350
354
.
3.
Miraskari
,
M.
,
Hemmati
,
F.
,
Jalali
,
A.
,
Alqaradawi
,
M. Y.
, and
Gadala
,
M. S.
,
2017
, “
A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031703
.
4.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm
,”
ASME J. Tribol.
,
113
(
2
), pp.
276
286
.
5.
Jones
,
C. J.
,
1983
, “
Crankshaft Bearings: Oil Film History
,” Tribology of Reciprocating Engines,
Proceedings of the 9th Leeds-Lyon Symposium on Tribology
,
Leeds, UK
,
Sept. 7–10, 1982
,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
, and
D.
Berthe
, eds.,
Butterworths, London
, pp.
83
88
.
6.
Profito
,
F. J.
,
Giacopini
,
M.
,
Zachariadis
,
D. C.
, and
Dini
,
D.
,
2015
, “
A General Finite Volume Method for the Solution of the Reynolds Lubrication Equation with a Mass-Conserving Cavitation Model
,”
Tribol. Lett.
,
60
(
1
), p.
18
.
7.
Bonneau
,
D.
,
Guines
,
D.
,
Frêne
,
J.
, and
Toplosky
,
J.
,
1995
, “
EHD Analysis, Including Structural Inertia Effects and a Mass-Conserving Cavitation Model
,”
ASME J. Tribol.
,
117
(
3
), pp.
540
547
.
8.
Gehannin
,
J.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2009
, “
Evaluation of Rayleigh-Plesset Equation Based Cavitation Models for Squeeze Film Dampers
,”
ASME J. Tribol.
,
131
(
2
), p.
024501
.
9.
Jaramillo
,
A.
, and
Buscaglia
,
G. C.
,
2019
, “
A Stable Numerical Strategy for Reynolds-Rayleigh-Plesset Coupling
,”
Tribol. Int.
,
130
, pp.
191
205
.
10.
Dhar
,
S.
,
Afjeh
,
H.
,
Srinivasan
,
C.
,
Ranganathan
,
R.
, and
Jiang
,
Y.
,
2016
, “
Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1854
1862
.
11.
Rohde
,
S. M.
, and
Li
,
D. F.
,
1980
, “
A Generalized Short Bearing Theory
,”
ASME J. Lubr. Tech.
,
102
(
3
), pp.
278
282
.
12.
Booker
,
J. F.
, and
Huebner
,
K. H.
,
1972
, “
Application of Finite Element Methods to Lubrication: An Engineering Approach
,”
ASME J. Lubr. Technol.
,
94
(
4
), pp.
313
323
.
13.
Booker
,
J. F.
,
Goenka
,
P. K.
, and
van Leeuwen
,
H. J.
,
1982
, “
Dynamic Analysis of Rocking Journal Bearings with Multiple Offset Segments
,”
ASME J. Lubr. Technol.
,
104
(
4
), pp.
478
490
.
14.
Boedo
,
S.
,
2021
, “
Concise Data Set Formulation for Dynamically Loaded Conformal Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
143
(
6
), p.
061802
.
15.
Booker
,
J. F.
, and
Boedo
,
S.
,
2001
, “
Finite Element Analysis of Elastic Engine Bearing Lubrication: Theory
,”
Revue Européenne des Éléments Finis
,
10
(
6–7
), pp.
705
724
.
16.
Boedo
,
S.
, and
Booker
,
J. F.
,
2001
, “
Finite Element Analysis of Elastic Engine Bearing Lubrication: Application
,”
Revue Européenne des Éléments Finis
,
10
(
6–7
), pp.
725
740
.
17.
Raimondi
,
A. A.
, and
Boyd
,
J.
,
1958
, “
A Solution of the Finite Journal Bearing and its Application to Analysis and Design: III
,”
ASLE Trans.
,
1
(
1
), pp.
194
209
.
18.
Okamoto
,
Y.
,
Mochizuki
,
M.
,
Mizuno
,
Y.
, and
Tanaka
,
T.
,
1995
, “
Experimental Study for the Oil Flow Supplied from Oil Hole on Statically Loaded Bearings
,” SAE Technical Paper Series, Paper No. 950947.
19.
Goenka
,
P. K.
,
1984
, “
Analytical Curve Fits for Solution Parameters of Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
106
(
4
), pp.
421
428
.
20.
Booker
,
J. F.
,
1965
, “
Dynamically Loaded Journal Bearings: Mobility Method of Solution
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
537
546
.
21.
Booker
,
J. F.
,
2014
, “
Mobility/Impedance Methods: A Guide for Application
,”
ASME J. Tribol.
,
136
(
2
), p.
024501
.
22.
Martin
,
F. A.
, and
Stanojevic
,
M.
,
1991
, “Oil Flow in Connecting-Rod Bearings,”
Vehicle Tribology
,
D.
Dowson
,
C. M.
Taylor
, and
M.
Godet
, eds.,
Elsevier
,
New York
, pp.
69
80
.
23.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2013
, “
On the Magnitude of Cavitation Pressure of Steady-State Lubrication
,”
Tribol. Lett.
,
51
(
1
), pp.
153
160
.
24.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm: Application/Validation
,”
ASME J. Tribol.
,
113
(
2
), pp.
255
261
.
25.
Smith
,
W. L.
,
1955
, “
Experimental Investigations of Dynamically Loaded Sleeve Bearings with No Shaft Rotation
,”
M.S. Thesis
,
Cornell University
,
Ithaca, NY
.
26.
Boedo
,
S.
,
2011
, “
Mass Conserving Cavitation Effects in Squeeze-Film Journal Bearings Subjected to Sinusoidal Loads
,”
Tribol. Trans.
,
54
(
1
), pp.
21
35
.
27.
Suzuki
,
S.
,
Ozasa
,
T.
,
Noda
,
T.
, and
Konomi
,
T.
,
1998
,
Analysis of Con-Rod Big-End Bearing Lubrication on the Basis of Oil Supply Rate
,” SAE Technical Paper Series, Paper No. 982439.
You do not currently have access to this content.