Abstract
This paper describes a computationally efficient, finite element implementation of a generalized short bearing (GSB) formulation to account for mass conservation in cavitated bearing regions. The method is applied to a set of examples representing partial and full journal bearings under transient loads and kinematics. Bearing performance trends are captured well by the GSB formulation when compared with results obtained from a complete two-dimensional formulation and from experiments. The computational speed of the GSB formulation is approximately 40 to 200 times faster than the complete formulation for the examples provided in the paper.
Issue Section:
Hydrodynamic Lubrication
References
1.
Braun
, M. J.
, and Hannon
, W. M.
, 2010
, “Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
, 224
(9
), pp. 839
–863
. 2.
Elrod
, H. G.
, 1981
, “A Cavitation Algorithm
,” ASME J. Lubr. Tech.
, 103
(3
), pp. 350
–354
. 3.
Miraskari
, M.
, Hemmati
, F.
, Jalali
, A.
, Alqaradawi
, M. Y.
, and Gadala
, M. S.
, 2017
, “A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,” ASME J. Tribol.
, 139
(3
), p. 031703
. 4.
Kumar
, A.
, and Booker
, J. F.
, 1991
, “A Finite Element Cavitation Algorithm
,” ASME J. Tribol.
, 113
(2
), pp. 276
–286
. 5.
Jones
, C. J.
, 1983
, “Crankshaft Bearings: Oil Film History
,” Tribology of Reciprocating Engines, Proceedings of the 9th Leeds-Lyon Symposium on Tribology
, Leeds, UK
, Sept. 7–10, 1982
, D.
Dowson
, C. M.
Taylor
, M.
Godet
, and D.
Berthe
, eds., Butterworths, London
, pp. 83
–88
.6.
Profito
, F. J.
, Giacopini
, M.
, Zachariadis
, D. C.
, and Dini
, D.
, 2015
, “A General Finite Volume Method for the Solution of the Reynolds Lubrication Equation with a Mass-Conserving Cavitation Model
,” Tribol. Lett.
, 60
(1
), p. 18
. 7.
Bonneau
, D.
, Guines
, D.
, Frêne
, J.
, and Toplosky
, J.
, 1995
, “EHD Analysis, Including Structural Inertia Effects and a Mass-Conserving Cavitation Model
,” ASME J. Tribol.
, 117
(3
), pp. 540
–547
. 8.
Gehannin
, J.
, Arghir
, M.
, and Bonneau
, O.
, 2009
, “Evaluation of Rayleigh-Plesset Equation Based Cavitation Models for Squeeze Film Dampers
,” ASME J. Tribol.
, 131
(2
), p. 024501
. 9.
Jaramillo
, A.
, and Buscaglia
, G. C.
, 2019
, “A Stable Numerical Strategy for Reynolds-Rayleigh-Plesset Coupling
,” Tribol. Int.
, 130
, pp. 191
–205
. 10.
Dhar
, S.
, Afjeh
, H.
, Srinivasan
, C.
, Ranganathan
, R.
, and Jiang
, Y.
, 2016
, “Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System
,” SAE Int. J. Engines
, 9
(3
), pp. 1854
–1862
. 11.
Rohde
, S. M.
, and Li
, D. F.
, 1980
, “A Generalized Short Bearing Theory
,” ASME J. Lubr. Tech.
, 102
(3
), pp. 278
–282
. 12.
Booker
, J. F.
, and Huebner
, K. H.
, 1972
, “Application of Finite Element Methods to Lubrication: An Engineering Approach
,” ASME J. Lubr. Technol.
, 94
(4
), pp. 313
–323
. 13.
Booker
, J. F.
, Goenka
, P. K.
, and van Leeuwen
, H. J.
, 1982
, “Dynamic Analysis of Rocking Journal Bearings with Multiple Offset Segments
,” ASME J. Lubr. Technol.
, 104
(4
), pp. 478
–490
. 14.
Boedo
, S.
, 2021
, “Concise Data Set Formulation for Dynamically Loaded Conformal Elastohydrodynamic Lubrication Problems
,” ASME J. Tribol.
, 143
(6
), p. 061802
. 15.
Booker
, J. F.
, and Boedo
, S.
, 2001
, “Finite Element Analysis of Elastic Engine Bearing Lubrication: Theory
,” Revue Européenne des Éléments Finis
, 10
(6–7
), pp. 705
–724
. 16.
Boedo
, S.
, and Booker
, J. F.
, 2001
, “Finite Element Analysis of Elastic Engine Bearing Lubrication: Application
,” Revue Européenne des Éléments Finis
, 10
(6–7
), pp. 725
–740
.17.
Raimondi
, A. A.
, and Boyd
, J.
, 1958
, “A Solution of the Finite Journal Bearing and its Application to Analysis and Design: III
,” ASLE Trans.
, 1
(1
), pp. 194
–209
. 18.
Okamoto
, Y.
, Mochizuki
, M.
, Mizuno
, Y.
, and Tanaka
, T.
, 1995
, “Experimental Study for the Oil Flow Supplied from Oil Hole on Statically Loaded Bearings
,” SAE Technical Paper Series, Paper No. 950947.19.
Goenka
, P. K.
, 1984
, “Analytical Curve Fits for Solution Parameters of Dynamically Loaded Journal Bearings
,” ASME J. Tribol.
, 106
(4
), pp. 421
–428
. 20.
Booker
, J. F.
, 1965
, “Dynamically Loaded Journal Bearings: Mobility Method of Solution
,” ASME J. Basic Eng.
, 87
(3
), pp. 537
–546
. 21.
Booker
, J. F.
, 2014
, “Mobility/Impedance Methods: A Guide for Application
,” ASME J. Tribol.
, 136
(2
), p. 024501
. 22.
Martin
, F. A.
, and Stanojevic
, M.
, 1991
, “Oil Flow in Connecting-Rod Bearings,” Vehicle Tribology
, D.
Dowson
, C. M.
Taylor
, and M.
Godet
, eds., Elsevier
, New York
, pp. 69
–80
.23.
Shen
, C.
, and Khonsari
, M. M.
, 2013
, “On the Magnitude of Cavitation Pressure of Steady-State Lubrication
,” Tribol. Lett.
, 51
(1
), pp. 153
–160
. 24.
Kumar
, A.
, and Booker
, J. F.
, 1991
, “A Finite Element Cavitation Algorithm: Application/Validation
,” ASME J. Tribol.
, 113
(2
), pp. 255
–261
. 25.
Smith
, W. L.
, 1955
, “Experimental Investigations of Dynamically Loaded Sleeve Bearings with No Shaft Rotation
,” M.S. Thesis
, Cornell University
, Ithaca, NY
.26.
Boedo
, S.
, 2011
, “Mass Conserving Cavitation Effects in Squeeze-Film Journal Bearings Subjected to Sinusoidal Loads
,” Tribol. Trans.
, 54
(1
), pp. 21
–35
. 27.
Suzuki
, S.
, Ozasa
, T.
, Noda
, T.
, and Konomi
, T.
, 1998
, Analysis of Con-Rod Big-End Bearing Lubrication on the Basis of Oil Supply Rate
,” SAE Technical Paper Series, Paper No. 982439.Copyright © 2021 by ASME
You do not currently have access to this content.