Abstract

High-strength Cu–25Zn–5Al–3Fe–3Mn brass has broad applications as a wear-resistant copper alloy, while its tribological behavior at high temperatures has not yet been well investigated. In this paper, the tribological behavior of Cu–25Zn–5Al–3Fe–3Mn alloy was investigated at room temperature –500 °C coupled with AISI 316L and AISI 440C stainless steel. The effects of test temperatures and counterparts on its tribological properties were systemically discussed. The results indicate that the friction and wear behavior are largely dependent on the test temperatures and counterparts. And there exists a clear distinction in the friction and wear behavior when the alloy sliding against different counterparts at RT–500 °C. The tribological properties of the alloy depend on the counterparts at RT–200 °C due to that the main wear mechanism is abrasive wear for Cu/316L pairs and plastic deformation for Cu/440C pairs. When the test temperature exceeds 300 °C, the adhesive wear is main wear mechanism. The softening resistance and oxidation process is decisive for the high temperatures tribological behavior.

References

1.
Maki
,
K.
,
Ito
,
Y.
,
Matsunaga
,
H.
, and
Mori
,
H.
,
2013
, “
Solid-Solution Copper Alloys With High Strength and High Electrical Conductivity
,”
Scr. Mater.
,
68
(
10
), pp.
777
780
.
2.
Shaik
,
M. A.
, and
Golla
,
B. R.
,
2019
, “
Development of Highly Wear Resistant Cu–Al Alloys Processed Via Powder Metallurgy
,”
Tribol. Int.
,
136
, pp.
127
139
.
3.
Pezeshkian
,
M.
,
Ebrahimzadeh
,
I.
, and
Gharavi
,
F.
,
2018
, “
Fabrication of Cu Surface Composite Reinforced by Ni Particles Via Friction Stir Processing: Microstructure and Tribology Behaviors
,”
ASME J. Tribol.
,
140
(
1
), p.
011607
.
4.
Akhtar
,
F.
,
Askari
,
S. J.
,
Shah
,
K. A.
,
Du
,
X.
, and
Guo
,
S.
,
2009
, “
Microstructure, Mechanical Properties, Electrical Conductivity and Wear Behavior of High Volume TiC Reinforced Cu-Matrix Composites
,”
Mater. Charact.
,
60
(
4
), pp.
327
336
.
5.
Zhao
,
J.
,
Peng
,
Y.
,
Zhou
,
Q.
, and
Zou
,
K.
,
2021
, “
The Current-Carrying Tribological Properties of Cu/Graphene Composites
,”
ASME J. Tribol.
,
143
(
10
), p.
102101
.
6.
Radhika
,
N.
, and
Andrew Jefferson
,
J.
,
2018
, “
Experimental Studies and Comparison of Centrifugally Cast Cu/SiC and Cu/Si3N4 Functionally Graded Composites on Mechanical and Wear Behavior
,”
ASME J. Tribol.
,
140
(
6
), p.
061602
.
7.
Xiao-Ming
,
H.
,
Fei
,
G.
,
Lin-Lin
,
S.
,
Rong
,
F.
, and
En
,
Z.
,
2017
, “
Effect of Graphite Content on the Tribological Performance of Copper-Matrix Composites Under Different Friction Speeds
,”
ASME J. Tribol.
,
139
(
4
), p.
041601
.
8.
Yan
,
J.
,
Lindo
,
A.
,
Schwaiger
,
R.
, and
Hodge
,
A. M.
,
2018
, “
Sliding Wear Behavior of Fully Nanotwinned Cu Alloys
,”
Friction
,
7
(
3
), pp.
260
267
.
9.
Xiao
,
Y.
,
Zhang
,
Z.
,
Yao
,
P.
,
Fan
,
K.
,
Zhou
,
H.
,
Gong
,
T.
,
Zhao
,
L.
, and
Deng
,
M.
,
2018
, “
Mechanical and Tribological Behaviors of Copper Metal Matrix Composites for Brake Pads Used in High-Speed Trains
,”
Tribol. Int.
,
119
, pp.
585
592
.
10.
Kong
,
X. L.
,
Liu
,
Y. B.
, and
Qiao
,
L. J.
,
2003
, “
Wear Behavior of Nanocrystalline Cu–Zn Alloy
,”
J. Mater. Eng. Perform.
,
12
(
3
), pp.
312
316
.
11.
Zhang
,
Y. S.
,
Wang
,
K.
,
Han
,
Z.
, and
Liu
,
G.
,
2007
, “
Dry Sliding Wear Behavior of Copper With Nano-Scaled Twins
,”
Wear
,
262
(
11–12
), pp.
1463
1470
.
12.
Baghani
,
M.
,
Aliofkhazraei
,
M.
, and
Askari
,
M.
,
2017
, “
Cu−Zn−Al2O3 Nanocomposites: Study of Microstructure, Corrosion, and Wear Properties
,”
Int. J. Min. Met. Mater.
,
24
(
4
), pp.
462
472
.
13.
Pan
,
S.
,
Zhao
,
C.
,
Zhu
,
W.
,
Jiang
,
F.
,
Zhou
,
J.
, and
Ren
,
F.
,
2019
, “
Sliding Wear Behavior of Spark Plasma-Sintered Cu–6 Wt Pct Cr Alloy at Room and Elevated Temperatures
,”
Metall. Mater. Trans. A
,
50
(
7
), pp.
3132
3147
.
14.
Purcek
,
G.
,
Yanar
,
H.
,
Demirtas
,
M.
,
Shangina
,
D. V.
,
Bochvar
,
N. R.
, and
Dobatkin
,
S. V.
,
2020
, “
Microstructural, Mechanical and Tribological Properties of Ultrafine-Grained Cu–Cr–Zr Alloy Processed by High Pressure Torsion
,”
J. Alloy. Compd.
,
816
, p.
152675
.
15.
Fan
,
B.
,
Hou
,
T.
,
Liu
,
R.
,
Guan
,
L.
,
Wang
,
H.
, and
Zhang
,
R.
,
2009
, “
Tribological Properties of SiC/Cu Composite at High Temperature
,”
J. Wuhan Univ. Technol. Mater. Sci. Ed.
,
24
(
6
), pp.
888
891
.
16.
Liu
,
D.
,
Tian
,
H.
,
Lin
,
L.
, and
Shi
,
W.
,
2019
, “
Microstructure, Mechanical and Elevated Temperature Tribological Behaviors of the Diamond/Cu Composites Prepared by Spark Plasma Sintering Method
,”
Diamond Relat. Mater.
,
91
, pp.
138
143
.
17.
Gao
,
M.
,
Chen
,
Z.
,
Kang
,
H.
,
Li
,
R.
,
Wang
,
W.
,
Zou
,
C.
, and
Wang
,
T.
,
2018
, “
Effects of Nb Addition on the Microstructures and Mechanical Properties of a Precipitation Hardening Cu–9Ni–6Sn Alloy
,”
Mater. Sci. Eng.: A
,
715
, pp.
340
347
.
18.
Kim
,
H. S.
,
Kim
,
W. Y.
, and
Song
,
K. H.
,
2012
, “
Effect of Post-Heat-Treatment in ECAP Processed Cu–40% Zn Brass
,”
J. Alloy. Compd.
,
536
, pp.
S200
S203
.
19.
Nobel
,
C.
,
Hofmann
,
U.
,
Klocke
,
F.
,
Veselovac
,
D.
, and
Puls
,
H.
,
2015
, “
Application of a New, Severe-Condition Friction Test Method to Understand the Machining Characteristics of Cu–Zn Alloys Using Coated Cutting Tools
,”
Wear
,
344–345
, pp.
58
68
.
20.
Azem
,
S.
,
Nechiche
,
M.
, and
Taibi
,
K.
,
2011
, “
Development of Copper Matrix Composite Reinforced With FeAl Particles Produced by Combustion Synthesis
,”
Powder Technol.
,
208
(
2
), pp.
515
520
.
21.
Li
,
H.
,
Jie
,
J.
,
Zhang
,
P.
,
Jia
,
C.
,
Wang
,
T.
, and
Li
,
T.
,
2016
, “
Study on the Formation and Precipitation Mechanism of Mn5Si3 Phase in the MBA-2 Brass Alloy
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
2616
2624
.
22.
Lei
,
Q.
,
Li
,
Z.
,
Dai
,
C.
,
Wang
,
J.
,
Chen
,
X.
,
Xie
,
J. M.
,
Yang
,
W. W.
, and
Chen
,
D. L.
,
2013
, “
Effect of Aluminum on Microstructure and Property of Cu–Ni–Si Alloys
,”
Mater. Sci. Eng.: A
,
572
, pp.
65
74
.
23.
Turhan
,
H.
,
2005
, “
Adhesive Wear Resistance of Cu–Sn–Zn–Pb Bronze With Additions of Fe, Mn and P
,”
Mater. Lett.
,
59
(
12
), pp.
1463
1469
.
24.
Tan
,
H.
,
Cheng
,
J.
,
Wang
,
S.
,
Zhu
,
S.
,
Yu
,
Y.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2018
, “
Tribological Behavior of Al–20Si–5Fe–2Ni Alloy at Elevated Temperatures Under Dry Sliding
,”
ASME J. Tribol.
,
140
(
3
), p.
031609
.
25.
Saravanan
,
M.
,
Devaraju
,
A.
,
Venkateshwaran
,
N.
,
Krishnakumari
,
A.
, and
Saarvesh
,
J.
,
2018
, “
A Review on Recent Progress in Coatings on AISI Austenitic Stainless Steel
,”
Mater. Today: Proc.
,
5
(
6
), pp.
14392
14396
.
26.
Idayan
,
A.
,
Gnanavelbabu
,
A.
, and
Rajkumar
,
K.
,
2014
, “
Influence of Deep Cryogenic Treatment on the Mechanical Properties of AISI 440C Bearing Steel
,”
Procedia Eng.
,
97
, pp.
1683
1691
.
27.
Li
,
H.
,
Liu
,
S. C.
,
Jie
,
J. C.
, and
Li
,
T. J.
,
2017
, “
Influence of Precipitation Hardening on the Sliding Wear Behavior of a Cu–Zn–Al–Mn–Si Based Brass Alloy
,”
Mater. Sci. Forum
,
898
, pp.
355
360
.
28.
Wen
,
H.
,
Topping
,
T. D.
,
Isheim
,
D.
,
Seidman
,
D. N.
, and
Lavernia
,
E. J.
,
2013
, “
Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu–Zn–Al Alloy Processed Via Cryomilling and Spark Plasma Sintering
,”
Acta Mater.
,
61
(
8
), pp.
2769
2782
.
29.
Lehmann
,
J. S.
,
Schwaiger
,
R.
,
Rinke
,
M.
, and
Greiner
,
C.
,
2020
, “
How Tribo-Oxidation Alters the Tribological Properties of Copper and Its Oxides
,”
Adv. Mater. Interfaces
,
8
(
1
), p.
2001673
.
30.
Chen
,
X.
,
Han
,
Z.
, and
Lu
,
K.
,
2015
, “
Enhancing Wear Resistance of Cu–Al Alloy by Controlling Subsurface Dynamic Recrystallization
,”
Scr. Mater.
,
101
, pp.
76
79
.
31.
Jia
,
S. G.
,
Liu
,
P.
,
Ren
,
F. Z.
,
Tian
,
B. H.
,
Zheng
,
M. S.
, and
Zhou
,
G. S.
,
2007
, “
Sliding Wear Behavior of Copper Alloy Contact Wire Against Copper-Based Strip for High-Speed Electrified Railways
,”
Wear
,
262
(
7–8
), pp.
772
777
.
32.
Triantou
,
K. I.
,
Pantelis
,
D. I.
,
Guipont
,
V.
, and
Jeandin
,
M.
,
2015
, “
Microstructure and Tribological Behavior of Copper and Composite Copper + Alumina Cold Sprayed Coatings for Various Alumina Contents
,”
Wear
,
336
, pp.
96
107
.
You do not currently have access to this content.