Abstract

There exist laminar and turbulent flow in the inner and outer fluid film of the hybrid floating ring bearing at high speed. The finite element method (FEM) and finite difference method (FDM) are used to solve the thermohydrodynamic (THD) lubrication model within the laminar and turbulent mixed flow regime which governs the pressure, temperature, viscosity, and Reynolds number of the two-layer fluid films together for a type of the journal hybrid floating ring bearing with deep/shallow pockets. The static and dynamic characteristics are analyzed including the load capacity, the friction moment, the volume flowrate, the stiffness, and damping coefficients with consideration of the mixed flow and thermal effect based on the floating ring balance. The unitized kinematic model of the shaft and floating ring is proposed to deduce the instability criteria and calculate the threshold rotational speed of a rigid Jeffcott rotor system supported on two hybrid floating ring bearings by the Routh–Hurwitz method. The results present that there are non-uniform pressure and temperature profile within the fluid film field, and the laminar flow and turbulent flow appear at certain positions of film through theory and experiment, separately. The mixed flow effect promotes the bearing load capacity and the friction moment at high speed and eccentricity, and the system threshold speed drops within the mixed flow regime. Therefore, the thermal effect and mixed flow existing in the fluid film should be considered into the lubrication analysis for the floating ring bearing.

References

1.
Dworski
,
J.
,
1964
, “
High-Speed Rotor Suspension Formed by Fully Floating Hydrodynamic Radial and Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
149
160
. 10.1115/1.3677567
2.
Andrés
,
L. S.
,
Yu
,
F.
, and
Gjika
,
K.
,
2018
, “
On the Influence of Lubricant Supply Conditions and Bearing Configuration to the Performance of (Semi) Floating Ring Bearing Systems for Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032503
. 10.1115/1.4037920
3.
Mokhtar
,
M. O. A.
,
1981
, “
Floating Ring Journal Bearings: Theory, Design and Optimization
,”
Tribol. Int.
,
14
(
2
), pp.
113
119
. 10.1016/0301-679X(81)90010-4
4.
Guo
,
H.
,
Lai
,
X.
,
Wu
,
X.
, and
Cen
,
S.
,
2009
, “
Performance of Flat Capillary Compensated Deep/Shallow Pockets Hydrostatic/Hydrodynamic Journal-Thrust Floating Ring Bearing
,”
Tribol. Trans.
,
52
(
2
), pp.
204
212
. 10.1080/10402000802354061
5.
Woschke
,
E.
,
Daniel
,
C.
, and
Nitzschke
,
S.
,
2017
, “
Excitation Mechanisms of Non-Linear Rotor Systems With Floating Ring Bearings—Simulation and Validation
,”
Int. J. Mech. Sci.
,
134
, pp.
15
27
. 10.1016/j.ijmecsci.2017.09.038
6.
Parkins
,
D. W.
,
1979
, “
Theoretical and Experimental Determination of the Dynamic Characteristics of a Hydrodynamic Journal Bearing
,”
ASME J. Lubr. Tech.
,
101
(
2
), pp.
129
137
. 10.1115/1.3453289
7.
Hatakenaka
,
K.
,
Tanaka
,
M.
, and
Suzuki
,
K.
,
2002
, “
A Theoretical Analysis of Floating Bush Journal Bearing With Axial Oil Film Rupture Being Considered
,”
ASME J. Tribol.
,
124
(
3
), pp.
494
505
. 10.1115/1.1454104
8.
Holt
,
C.
,
Andrés
,
L. S.
,
Sahay
,
S.
,
Tang
,
P.
,
Rue
,
G. L.
, and
Gjika
,
K.
,
2005
, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
107
115
. 10.1115/1.1857922
9.
Kirk
,
R.
,
Alsaeed
,
A.
,
Liptrap
,
J.
,
Lindsey
,
C.
,
Sutherland
,
D.
,
Dillon
,
B.
,
Saunders
,
E.
,
Chappell
,
M.
,
Nawshin
,
S.
,
Christian
,
E.
,
Ellis
,
A.
,
Mondschein
,
B.
,
Oliver
,
J.
, and
Sterling
,
J.
,
2008
, “
Experimental Test Results for Vibration of a High Speed Diesel Engine Turbocharger
,”
Tribol. Trans.
,
51
(
4
), pp.
422
427
. 10.1080/10402000801911853
10.
Bonello
,
P.
,
2009
, “
Transient Modal Analysis of the Non-Linear Dynamics of a Turbocharger on Floating Ring Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
223
(
1
), pp.
79
93
. 10.1243/13506501JET436
11.
Tatara
,
A.
,
1970
, “
An Experimental Study of the Stabilizing Effect of Floating-Bush Journal Bearings
,”
Bull. JSME
,
13
(
61
), pp.
858
863
. 10.1299/jsme1958.13.858
12.
Liang
,
F.
,
Zhou
,
M.
, and
Xu
,
Q.
,
2016
, “
Effects of Semi-Floating Ring Bearing Outer Clearance on the Subsynchronous Oscillation of Turbocharger Rotor
,”
Chin. J. Mech. Eng.
,
29
(
5
), pp.
901
910
. 10.3901/CJME.2016.0421.057
13.
Tkacz
,
E.
,
Kozanecki
,
Z.
, and
Łagodziński
,
J.
,
2018
, “
High-Speed Hermetic Turbogenerator With a Hybrid Bearing System
,”
J. Vib. Eng. Technol.
,
6
(
4
), pp.
325
331
. 10.1007/s42417-018-0042-3
14.
Dwivedi
,
V. K.
,
Chand
,
S.
, and
Pandeyc
,
K. N.
,
2012
, “
Effect of Number and Size of Recess on the Performance of Hybrid (Hydrostatic/Hydrodynamic) Journal Bearing
,”
Chemical, Civil and Mechanical Engineering Tracks of 3rd Nirma University International Conference on Engineering
,
Ahmedabad, India
,
Dec. 6–8
, pp.
810
817
.
15.
Huang
,
Y.
,
Zhang
,
S.
,
Liu
,
Y.
,
Peng
,
B.
, and
Zhang
,
G.
,
2012
, “
Hydrostatic-Hydrodynamic Bearing Design of High-Speed Camshaft Grinding
,”
Adv. Mater. Res.
,
590
, pp.
385
390
. 10.4028/www.scientific.net/AMR.590.385
16.
Lu
,
D.
,
Liu
,
K.
,
Zhao
,
W.
, and
Lu
,
B.
,
2016
, “
Thermal Characteristics of Water-Lubricated Ceramic Hydrostatic Hydrodynamic Hybrid Bearings
,”
Tribol. Lett.
,
63
(
2
), p.
23
. 10.1007/s11249-016-0711-x
17.
Trippett
,
R. J.
, and
Li
,
D. F.
,
1984
, “
High-Speed Floating-Ring Bearing Test and Analysis
,”
ASLE Trans.
,
27
(
1
), pp.
73
81
. 10.1080/05698198408981547
18.
Clarke
,
D. M.
,
Fall
,
C.
,
Hayden
,
G. N.
, and
Wilkinson
,
T. S.
,
1992
, “
A Steady-State Model of a Floating Ring Bearing, Including Thermal Effects
,”
ASME J. Tribol.
,
114
(
1
), pp.
141
149
. 10.1115/1.2920852
19.
Andrés
,
L. S.
, and
Kerth
,
J.
,
2004
, “
Thermal Effects on the Performance of Floating Ring Bearings for Turbochargers
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
218
(
5
), pp.
437
450
. 10.1243/1350650042128067
20.
Paranjpe
,
R. S.
, and
Han
,
T.
,
1994
, “
A Study of the Thermohydrodynamic Performance of Steadily Loaded Journal Bearings
,”
Tribol. Trans.
,
37
(
4
), pp.
679
690
. 10.1080/10402009408983347
21.
Keogh
,
P. S.
, and
Khonsari
,
M. M.
,
2001
, “
Influence of Inlet Conditions on the Thermohydrodynamic State of a Fully Circumferentially Grooved Journal Bearing
,”
ASME J. Tribol.
,
123
(
3
), pp.
525
532
. 10.1115/1.1308029
22.
Guo
,
H.
,
Xia
,
B.
, and
Cen
,
S.
,
2011
, “
Performance Analysis of High Speed Floating Ring Hybrid Bearing in the Laminar and Turbulent Regimes
,”
Adv. Mater. Res.
,
197
, pp.
1776
1780
. 10.4028/www.scientific.net/AMR.197-198.1776
23.
Wang
,
Y.
,
Qin
,
D.
,
Guo
,
H.
, and
Cen
,
S.
,
2012
, “
Performance Analysis of the Rayleigh Step Bearing Under the Coexistence State of Fluid With Laminar Flow and Turbulence
,”
Adv. Mater. Res.
,
396
, pp.
396
398
. 10.4028/www.scientific.net/AMR.396-398.886
24.
Martinez Esparza
,
L. F.
,
Cervantes de Gortari
,
J. G.
, and
Chicurel Uziel
,
E. J.
,
2017
, “
Design of Hybrid Hydrostatic/Hydrodynamic Journal Bearings for Optimum Self-Compensation Under Misaligning External Loads
,”
ASME J. Tribol.
,
139
(
4
), p.
041702
. 10.1115/1.4035157
25.
Arihara
,
H.
,
Kameyama
,
Y.
,
Baba
,
Y.
, and
Andrés
,
L. S.
,
2018
, “
Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed—Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021023
. 10.1115/1.4041130
26.
Wang
,
L.
,
Zeng
,
Q.
,
Lu
,
C.
, and
Liang
,
P.
,
2019
, “
A Numerical Analysis and Experimental Investigation of Three Oil Grooves Sleeve Bearing Performance
,”
Ind. Lubr. Tribol.
,
71
(
2
), pp.
181
187
. 10.1108/ILT-11-2017-0331
27.
Chetti
,
B.
,
2018
, “
Combined Effects of Turbulence and Elastic Deformation on the Performance of a Journal Bearing Lubricated With a Couple Stress Fluid
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
232
(
12
), pp.
1597
1603
. 10.1177/1350650118757555
28.
Zhu
,
S.
,
Sun
,
J.
,
Li
,
B.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
, and
Zhu
,
G.
,
2019
, “
Stochastic Models for Turbulent Lubrication of Bearing With Rough Surfaces
,”
Tribol. Int.
,
136
, pp.
224
233
. 10.1016/j.triboint.2019.03.063
29.
Andrés
,
L. S.
,
Phillips
,
S.
, and
Childs
,
D.
,
2017
, “
A Water-Lubricated Hybrid Thrust Bearing: Measurements and Predictions of Static Load Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022506
. 10.1115/1.4034042
30.
Lv
,
F.
,
Zou
,
D.
,
Ta
,
N.
, and
Rao
,
Z.
,
2019
, “
Influence of Local Turbulent Flow on the Performance of a Mixed-Lubrication Bearing
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
233
(
7
), pp.
1029
1035
. 10.1177/1350650118818303
31.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
. 10.1016/j.triboint.2018.09.007
32.
Zhang
,
Z.
,
Yang
,
Y.
,
Dai
,
X.
, and
Xie
,
Y.
,
2013
, “
Effects of Thermal Boundary Conditions on Plain Journal Bearing Thermohydrodynamic Lubrication
,”
Tribol. Trans.
,
56
(
5
), pp.
759
770
. 10.1080/10402004.2013.797531
33.
Guo
,
H.
,
Zhang
,
Z.
, and
Cen
,
S.
,
2012
, “
Stability of a Journal Floating Ring Hybrid Bearing
,”
J. Vib. Shock
,
31
(
17
), pp.
17
21
. 10.13465/j.cnki.jvs.2016.02.028
34.
Hussain
,
A.
,
Biswas
,
S.
, and
Athre
,
K.
,
1992
, “
A New Viscosity-Temperature Relationship for Liquid Lubricants
,”
Wear
,
156
(
1
), pp.
1
18
. 10.1016/0043-1648(92)90140-4
You do not currently have access to this content.