Abstract

Fretting is a damaging phenomenon, generally observed when a mating pair is subjected to a small amplitude of oscillatory motion. The contact behavior in fretting is governed by a complex interaction between mechanical properties of mating pair, contact geometry, and loading conditions. In most of the practical applications, dissimilar materials are chosen for a contacting pair with one of the materials having superior material properties than other so as to replace the worn-out or unfit component during the maintenance. In the literature, many researchers have studied the effect of dissimilar materials on fretting behavior but mainly in the context of hardness. As experimental methodology has been adopted in these studies, the effect of dissimilar material properties has been reported in terms of global variables like wear volume or fretting fatigue life, but its influence on underlying local contact tractions could not be studied. In the present work, a two-dimensional finite element analysis has been carried out for a cylinder-on-plate configuration. The effect of dissimilar materials for the mating pair has been studied by modeling elastic–plastic behavior for combinations of three different materials, namely, SS 304, ASTM A302-B, and aluminum. The validation of the finite element model is carried out by comparing the results of elastic analysis with the analytical solutions available in the literature. The pertinent contact parameters in the context of fretting wear, namely, contact pressure, contact slip, and contact stresses are extracted. A frictional dissipation energy density-based approach is used for the qualitative comparison of the fretting damage for different cases and validated with the literature data.

References

1.
Eden
,
E. M.
,
Rose
,
W. N.
, and
Cunningham
,
P. L.
,
2011
, “
The Endurance of Metals: Experiments on Rotating Beams at University College, London
,”
Proc. Inst. Mech. Eng.
,
81
(
1
), pp.
839
974
. 10.1243/PIME_PROC_1911_081_017_02
2.
Waterhouse
,
R. B.
,
1972
,
Fretting Corrosion
,
Pergamon Press
,
Oxford, UK
.
3.
Hojjati-Talemi
,
R.
,
Zahedi
,
A.
, and
Baets
,
P. D.
,
2015
, “
Fretting Fatigue Failure Mechanism of Automotive Shock Absorber Valve
,”
Int. J. Fatigue
,
73
, pp.
58
65
. 10.1016/j.ijfatigue.2014.11.010
4.
Choi
,
S. J.
, and
Cho
,
Y. T.
,
2015
, “
Fretting Fatigue Behavior in Railway Axle Materials
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
23
31
. 10.1007/s12206-014-1204-1
5.
Wackers
,
P.
,
Victor
,
A.
,
Marcel
,
A.
,
Andrei
,
C.
, and
Habibou
,
M.
,
2010
, “
A Modeling Approach to Predict Fretting Fatigue on Highly Loaded Blade Roots
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082101
. 10.1115/1.3205026
6.
Kim
,
H.
,
Lee
,
Y.
, and
Lee
,
K.
,
2008
, “
On the Geometry of the Fuel Rod Supports Concerning a Fretting Wear Failure
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3321
3330
. 10.1016/j.nucengdes.2008.08.010
7.
Shinde
,
D. U.
,
2008
, “
Wear Simulation of Electrical Contacts Subjected to Vibrations
,”
M.S. thesis
,
Auburn University
,
Alabama
.
8.
Bitter
,
T.
,
Khan
,
I.
,
Marriott
,
T.
,
Lovelady
,
E.
,
Verdonschot
,
N.
, and
Janssen
,
D.
,
2018
, “
Finite Element Wear Prediction Using Adaptive Meshing at the Modular Taper Interface of Hip Implants
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
616
623
. 10.1016/j.jmbbm.2017.10.032
9.
Ding
,
J.
,
Mccoll
,
I. R.
, and
Leen
,
S. B.
,
2007
, “
The Application of Fretting Wear Modelling to a Spline Coupling
,”
Wear
,
262
(
9–10
), pp.
1205
1216
. 10.1016/j.wear.2006.11.017
10.
Qureshi
,
W.
,
Francesca
,
C.
, and
Mura
,
A.
,
2016
, “
Prediction of Fretting Wear in Aero-Engine Spline Couplings Made of 42CrMo4
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
24
), pp.
4684
4692
. 10.1177/0954406216669177
11.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2012
, “
Finite Element Modeling and Experimental Validation of Fretting Wear Scars in Thin Steel Wires
,”
Wear
,
289
, pp.
26
38
. 10.1016/j.wear.2012.04.018
12.
Lee
,
H.
, and
Mall
,
S.
,
2004
, “
Effect of Dissimilar Mating Materials and Contact Force on Fretting Fatigue Behavior of Ti–6Al–4 V
,”
Tribol. Int.
,
37
(
1
), pp.
35
44
. 10.1016/S0301-679X(03)00112-9
13.
Nix
,
K. J.
, and
Lindley
,
T. C.
,
1988
, “
The Influence of Relative Slip Range and Contact Material on the Fretting Fatigue Properties of 3.5NiCrMoV Rotor Steel
,”
Wear
,
125
(
1–2
), pp.
147
162
. 10.1016/0043-1648(88)90199-8
14.
Lee
,
H.
,
2004
, “
Fretting Fatigue Behavior of Ti–6Al–4 V With Dissimilar Mating Materials
,”
Int. J. Fatigue
,
26
(
4
), pp.
393
402
. 10.1016/j.ijfatigue.2003.07.004
15.
Kayaba
,
T.
, and
Iwabuchi
,
A.
,
1981
, “
Effect of the Hardness of Hardened Steels and the Action of Oxides on Fretting Wear
,”
Wear
,
66
(
1
), pp.
27
41
. 10.1016/0043-1648(81)90030-2
16.
Ramesh
,
R.
, and
Gnanamoorthy
,
R.
,
2007
, “
Effect of Hardness on Fretting Wear Behaviour of Structural Steel, En 24, Against Bearing Steel, En 31
,”
Mater. Des.
,
28
(
5
), pp.
1447
1452
. 10.1016/j.matdes.2006.03.020
17.
Lemm
,
J. D.
,
Warmuth
,
A. R.
,
Pearson
,
S. R.
, and
Shipway
,
P. H.
,
2015
, “
The Influence of Surface Hardness on the Fretting Wear of Steel Pairs—Its Role in Debris Retention in the Contact
,”
Tribol. Int.
,
81
, pp.
258
266
. 10.1016/j.triboint.2014.09.003
18.
Mcveigh
,
P. A.
, and
Farris
,
T. N.
,
1997
, “
Finite Element Analysis of Fretting Stresses
,”
ASME J. Tribol.
,
119
(
4
), pp.
797
801
. 10.1115/1.2833887
19.
Begley
,
M. R.
, and
Hutchinson
,
J. W.
,
1999
, “
Plasticity in Fretting of Coated Substrates
,”
Eng. Fract. Mech.
,
62
(
2–3
), pp.
145
164
. 10.1016/S0013-7944(99)00002-8
20.
Tsai
,
C. T.
, and
Mall
,
S.
,
2000
, “
Elasto-Plastic Finite Element Analysis of Fretting Stresses in Pre-Stressed Strip in Contact With Cylindrical Pad
,”
Finite Elem. Anal. Des.
,
36
(
2
), pp.
171
187
. 10.1016/S0168-874X(00)00016-0
21.
Ambrico
,
J.
,
2000
, “
Plasticity in Fretting Contact
,”
J. Mech. Phys. Solids
,
48
(
11
), pp.
2391
2417
. 10.1016/S0022-5096(99)00103-9
22.
Tur
,
M.
,
Fuenmayor
,
J.
,
Ródenas
,
J. J.
, and
Giner
,
E.
,
2003
, “
3D Analysis of the Influence of Specimen Dimensions on Fretting Stresses
,”
Finite Elem. Anal. Des.
,
39
(
10
), pp.
933
949
. 10.1016/S0168-874X(02)00139-7
23.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1998
, “
A Three-Dimensional Analysis of Fretting Fatigue
,”
Acta Mater.
,
46
(
1
), pp.
177
192
. 10.1016/S1359-6454(97)00210-3
24.
Ambrico
,
J.
, and
Begley
,
M.
,
2001
, “
The Role of Macroscopic Plastic Deformation in Fretting Fatigue Life Predictions
,”
Int. J. Fatigue
,
23
(
2
), pp.
121
128
. 10.1016/S0142-1123(00)00078-5
25.
Kim
,
H. S.
, and
Mall
,
S.
,
2005
, “
Investigation Into Three-Dimensional Effects of Finite Contact Width on Fretting Fatigue
,”
Finite Elem. Anal. Des.
,
41
(
11–12
), pp.
1140
1159
. 10.1016/j.finel.2005.02.001
26.
Johansson
,
K. L.
,
1994
, “
Numerical Simulation of Contact Pressure Evolution in Fretting
,”
ASME J. Tribol.
,
116
(
2
), pp.
247
254
. 10.1115/1.2927205
27.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
. 10.1016/j.wear.2003.07.001
28.
Ding
,
J.
,
2004
, “
The Effect of Slip Regime on Fretting Wear-Induced Stress Evolution
,”
Int. J. Fatigue
,
26
(
5
), pp.
521
531
. 10.1016/j.ijfatigue.2003.09.001
29.
Ding
,
J.
,
McColl
,
I. R.
,
Leen
,
S. B.
, and
Shipway
,
P. H.
,
2007
, “
A Finite Element Based Approach to Simulating the Effects of Debris on Fretting Wear
,”
Wear
,
263
(
1–6
), pp.
481
491
. 10.1016/j.wear.2006.12.056
30.
Gallego
,
L.
, and
Nélias
,
D.
,
2007
, “
Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions
,”
ASME J. Tribol.
,
129
(
3
), pp.
528
535
. 10.1115/1.2736436
31.
Paulin
,
C.
,
Fouvry
,
S.
, and
Meunier
,
C.
,
2008
, “
Finite Element Modelling of Fretting Wear Surface Evolution: Application to a Ti–6A1–4 V Contact
,”
Wear
,
264
(
1–2
), pp.
26
36
. 10.1016/j.wear.2007.01.037
32.
Yue
,
T.
, and
Wahab
,
M. A.
,
2016
, “
Finite Element Simulations of the Effect of Friction Coefficient in Fretting Wear
,”
Int. J. Fracture Fatigue Wear
,
4
, pp.
58
63
.
33.
Yue
,
T.
, and
Wahab
,
M. A.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribol. Int.
,
107
, pp.
274
282
. 10.1016/j.triboint.2016.11.044
34.
Fouvry
,
S.
,
Liskiewicz
,
T.
,
Kapsa
,
P.
,
Hannel
,
S.
, and
Sauger
,
E.
,
2003
, “
An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts
,”
Wear
,
255
(
1–6
), pp.
287
298
. 10.1016/S0043-1648(03)00117-0
35.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
36.
Johnson
,
K. L.
,
1961
, “
Energy Dissipation at Spherical Surfaces in Contact Transmitting Oscillating Forces
,”
J. Mech. Eng. Sci.
,
3
(
4
), pp.
362
368
. 10.1243/JMES_JOUR_1961_003_048_02
37.
Kasarekar
,
A. T.
,
Nathan
,
W. B.
,
Sadeghi
,
F.
, and
Tseregounis
,
S.
,
2007
, “
Modeling of Fretting Wear Evolution in Rough Circular Contacts in Partial Slip
,”
Int. J. Mech. Sci.
,
49
(
6
), pp.
690
703
. 10.1016/j.ijmecsci.2006.08.021
38.
Liskiewicz
,
T.
,
Fouvry
,
S.
, and
Wendler
,
B.
,
2003
, “
Impact of Variable Loading Conditions on Fretting Wear
,”
Surf. Coat. Technol.
,
163–164
, pp.
465
471
. 10.1016/S0257-8972(02)00643-6
39.
Paulin
,
C.
,
Fouvry
,
S.
, and
Deyber
,
S.
,
2005
, “
Wear Kinetics of Ti–6Al–4 V Under Constant and Variable Fretting Sliding Conditions
,”
Wear
,
259
(
1–6
), pp.
292
299
. 10.1016/j.wear.2005.01.034
40.
Leidich
,
E.
,
Maiwald
,
A.
, and
Vidner
,
J.
,
2013
, “
A Proposal for a Fretting Wear Criterion for Coated Systems With Complete Contact Based on Accumulated Friction Energy Density
,”
Wear
,
297
(
1–2
), pp.
903
910
. 10.1016/j.wear.2012.11.006
41.
ABAQUS
,
2012
,
ABAQUS Documentation
,
Dassault Systèmes Simulia Corp.
,
Providence, RI
.
42.
James
,
L. A.
,
1995
, “
Ramberg-Osgood Strain-Hardening Characterization of an ASTM A302-B Steel
,”
ASME J. Pressure Vessel Technol.
,
117
(
4
), pp.
341
345
. 10.1115/1.2842133
43.
Hertz
,
H.
,
1882
, “
On the Contact of Elastic Solids
,”
J. Pure Appl. Math.
,
92
, pp.
156
171
.
44.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
45.
Anandavel
,
K.
, and
Prakash
,
R. V.
,
2011
, “
Effect of Three-Dimensional Loading on Macroscopic Fretting Aspects of an Aero-Engine Blade–Disc Dovetail Interface
,”
Tribol. Int.
,
44
(
11
), pp.
1544
1555
. 10.1016/j.triboint.2010.10.014
46.
Buckley
,
D. H.
,
1974
,
Friction Behaviour of 304 Stainless Steel of Varying Hardness Lubricated With Benzene and Some Benzyl Structure
,
NASA
,
WA, D.C.
47.
Kumar
,
S. A.
,
Sai
,
S. K.
,
Raman
,
S. G. S.
, and
Gnanamoorthy
,
R.
,
2013
, “
Fretting Wear Behaviour of 304 Stainless Steel Fretted Against Different Counterbody Materials
,”
Tribol. Mater., Surf. Interfaces
,
7
(
4
), pp.
168
174
. 10.1179/1751584X13Y.0000000041
48.
Esteves
,
M.
,
Ramalho
,
A.
, and
Ramos
,
F.
,
2015
, “
Fretting Behavior of the AISI 304 Stainless Steel Under Different Atmosphere Environments
,”
Tribol. Int.
,
88
, pp.
56
65
. 10.1016/j.triboint.2015.02.016
49.
Fan
,
N.
,
Yunxia
,
W.
,
Qiufeng
,
W.
,
Mengjiao
,
W.
, and
Fengyuan
,
Y.
,
2018
, “
Effect of Displacement Amplitude on Fretting Wear of 304 Stainless Steel in Air and Sea Water
,”
Lubr. Sci.
,
30
(
3
), pp.
116
125
. 10.1002/ls.1409
50.
Elleuch
,
K.
, and
Fouvry
,
S.
,
2005
, “
Experimental and Modelling Aspects of Abrasive Wear of a A357 Aluminium Alloy Under Gross Slip Fretting Conditions
,”
Wear
,
258
(
1–4
), pp.
40
49
. 10.1016/j.wear.2004.04.010
51.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1996
, “
Three-Dimensional Finite Element Analysis of Surface Deformation and Stresses in an Elastic-Plastic Layered Medium Subjected to Indentation and Sliding Contact Loading
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
365
375
. 10.1115/1.2788874
52.
Madge
,
J. J.
,
2008
, “
Numerical Modelling of the Effect of Fretting Wear on Fretting Fatigue
,”
Ph.D. thesis
,
University of Nottingham
,
UK
.
53.
Liu
,
L.
, and
Eriten
,
M.
,
2016
, “
Frictional Energy Dissipation in Wavy Surfaces
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121001
. 10.1115/1.4034461
54.
Hills
,
D. A.
, and
Nowell
,
D.
,
1994
,
Mechanics of Fretting Fatigue
,
Kluwer Academic Publishers
,
Netherlands
.
55.
Malzbender
,
J.
,
den Toonder
,
J. M. J.
,
Balkenende
,
A. R.
, and
de With
,
G.
,
2002
, “
Measuring Mechanical Properties of Coatings: A Methodology Applied to Nano-Particle-Filled Sol–Gel Coatings on Glass
,”
Mater. Sci. Eng. R: Reports
,
36
(
2–3
), pp.
47
103
. 10.1016/S0927-796X(01)00040-7
You do not currently have access to this content.