Abstract

A slide guide is the core component of a machine tool feed system, and its wear significantly affects feeding accuracy, machining accuracy, and product quality. This study aims to obtain a suitable wear calculation model for the slide guide under working conditions. The slide guide is a typical plane sliding pair. Based on the principle of friction fatigue, the wear model of plane sliding pairs had been previously established without considering lubrication. Actually, the friction surface of the slide guide is in the state of boundary lubrication when it works normally. In this study, the analysis on the interactions among friction surface asperities covered with a boundary film indicated that the wear model of plane sliding pairs was also applicable to calculate the wear of the slide guide under boundary lubrication by substituting the friction coefficient µ and the fatigue exponent k under lubricating conditions into the wear model. Then, a series of pin-on-disc wear tests with material specimens of the slide guide under boundary lubrication were designed with the working load and working speed of the pair as the experimental parameters. The comparison between the experimental results and calculated results showed that the wear model of plane sliding pairs could be used to predict the wear of the slide guide under boundary lubrication. The wear model reflected the quantitative relationship between the wear rate of the slide guide and its main influencing factors. The study also provides the basis for the tribological design and precision design of the slide guide.

References

References
1.
Tang
,
K. Y.
,
2006
, “
The Abrasion of the Slideway and Its Influence on the Precision of the Machine Tool
,”
Mech. Res. Appl.
,
19
(
5
), pp.
12
14
.
2.
Nallasamy
,
P.
,
Saravanakumar
,
N.
,
Nagendran
,
S.
,
Suriya
,
E.
, and
Yashwant
,
D.
,
2015
, “
Tribological Investigations on MoS2-Based Nanolubricant for Machine Tool Slideways
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
5
), pp.
559
567
. 10.1177/1350650114556394
3.
Nallasamy
,
P.
,
Saravanakumar
,
N.
, and
Rajaram
,
G.
,
2018
, “
Experimental Study on the Tribological Properties of CuO-Based Biodegradable Nanolubricants for Machine Tool Slideways
,”
Int. J. Surf. Sci. Eng.
,
12
(
3
), pp.
194
206
. 10.1504/IJSURFSE.2018.094771
4.
Lubas
,
J.
,
2012
, “
Assessment and Application of TiB2 Coating in Sliding Pair Under Lubrication Conditions
,”
Wear
,
296
(
1–2
), pp.
504
509
. 10.1016/j.wear.2012.08.005
5.
Korzynska
,
K.
,
Swirad
,
S.
, and
Lubas
,
J.
,
2012
, “
A Comparison of the Tribological Behaviors of 46Cr2 Steel Modified With Boron
,”
Tribol. Trans.
,
55
(
3
), pp.
325
333
. 10.1080/10402004.2012.655437
6.
Ogawa
,
H.
,
Sasaki
,
S.
,
Korenaga
,
A.
,
Miyake
,
K.
,
Nakano
,
M.
, and
Murakami
,
T.
,
2010
, “
Effects of Surface Texture Size on the Tribological Properties of Slideways
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
224
(
9
), pp.
885
890
. 10.1243/13506501JET735
7.
Wang
,
Y.-Q.
,
Yuan
,
X.-H.
, and
Pan
,
X.-H.
,
2015
, “
Using Laser Surface Treatment to Produce a Slideway on a Computer Numerical Control (CNC) Machine Tool With Biomimetic Characteristics
,”
Lasers Eng.
,
31
(
5–6
), pp.
321
332
.
8.
Itoigawa
,
F.
,
2011
, “
Challenge for Extremely Low Friction of Slide Guide-Way
,”
J. Jpn. Soc. Tribol.
,
56
(
9
), pp.
543
548
.
9.
Okonkwo
,
P. C.
,
Kelly
,
G.
,
Rolfe
,
B. F.
, and
Pereira
,
M. P.
,
2012
, “
The Effect of Temperature on Sliding Wear of Steel-Tool Steel Pairs
,”
Wear
,
282
, pp.
22
30
. 10.1016/j.wear.2012.01.017
10.
Chowdhury
,
M. A.
,
Nuruzzaman
,
D. M.
,
Kumar Roy
,
B.
,
Rahman
,
M. M.
,
Mia
,
M. S.
,
Mia
,
M. R.
, and
Bhumik
,
S.
,
2013
, “
Experimental Investigation of Friction Coefficient and Wear Rate of Different Sliding Pairs
,”
World Appl. Sci. J.
,
28
(
5
), pp.
608
619
.
11.
Sachek
,
B. Y.
,
Mezrin
,
A. M.
, and
Zaytzev
,
A. N.
,
2014
, “
Experimental Study of the Speed-Dependence Tribotechnical Characteristics of Some Plasma-Sprayed Oxide Coatings at Elevated Temperatures
,”
J. Friction Wear
,
35
(
3
), pp.
194
200
. 10.3103/S106836661403012X
12.
Amiri
,
M.
,
Khonsari
,
M. M.
, and
Brahmeshwarkar
,
S.
,
2010
, “
On the Relationship Between Wear and Thermal Response in Sliding Systems
,”
Tribol. Lett.
,
38
(
2
), pp.
147
154
. 10.1007/s11249-010-9584-6
13.
Autay
,
R.
,
Kchaou
,
M.
, and
Dammak
,
F.
,
2012
, “
Friction and Wear Behavior of Steels Under Different Reciprocating Sliding Conditions
,”
Tribol. Trans.
,
55
(
5
), pp.
590
598
. 10.1080/10402004.2012.684427
14.
Zhong
,
S. H.
,
1987
, “
Cause Analysis of Wear and Anti-Wear Measures of Machine Tool Guide Rails
,”
Proceedings of the 4th National Academic Exchange Conference on Tribology
,
Chengdu
,
Sept. 10
, pp.
1
7
.
15.
Shi
,
K. L.
,
1988
, “
Wear Calculation of Machine Tool Sliding Guide
,”
Machinery
,
15
(
4
), pp.
43
46
.
16.
Kolmogorov
,
V.
,
1996
, “
Friction and Wear Model for a Heavily Loaded Sliding Pair. Part I. Metal Damage and Fracture Model
,”
Wear
,
194
(
1–2
), pp.
71
79
. 10.1016/0043-1648(95)06718-3
17.
Kolmogorov
,
V. L.
,
Kharlamov
,
V. V.
,
Kurilov
,
A. M.
, and
Pavlishko
,
S. V.
,
1996
, “
Friction and Wear Model of a Heavy-Loaded Sliding Pair Part II. Application to an Unlubricated Journal Bearing
,”
Wear
,
197
(
1–2
), pp.
9
16
. 10.1016/0043-1648(95)06719-1
18.
Kharlamov
,
V. V.
,
Kolmogorov
,
V. L.
, and
Pavlishko
,
S. V.
,
2000
, “
Friction and Wear Model of a Heavy Loaded Sliding Pair: Part III. Application to a Lubricated Plane Bearing
,”
Wear
,
241
(
1
), pp.
65
78
. 10.1016/S0043-1648(00)00364-1
19.
Wen
,
S. Z.
, and
Huang
,
P.
,
2012
,
Principles of Tribology
, 4th ed.,
Tsinghua University Press
,
Beijing
.
20.
Kragelsky
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
,
1982
,
Friction and Wear: Calculation Methods
,
China Machine Press
,
Beijing
.
21.
Sosnovskiy
,
L. A.
, and
Gao
,
W. Z.
,
2013
,
Tribo-Fatigue: Wear-Fatigue Damage and Its Prediction
,
China University of Mining Press
,
Xuzhou
.
22.
Tan
,
Y.
,
Zhang
,
L.
, and
Hu
,
Y.
,
2015
, “
A Wear Model of Plane Sliding Pairs Based on Fatigue Contact Analysis of Asperities
,”
Tribol. Trans.
,
58
(
1
), pp.
148
157
. 10.1080/10402004.2014.956907
23.
Fan
,
W. G.
,
2002
, “
Wear Mechanism Under Boundary Lubrication Conditions
,”
J. Jilin Inst. Technol. Nat. Sci. Ed.
,
23
(
1
), pp.
31
32
.
24.
Cheng
,
D. X.
,
2010
,
Handbook of Mechanical Design
,
Chemical Industry Press
,
Beijing
.
25.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
26.
Fein
,
R. S.
,
1975
, “
AWN—A Proposed Quantitative Measure of Wear Protection (AntiWear Number)
,”
Lubr. Eng.
,
31
, pp.
581
582
.
27.
Lemm
,
J. D.
,
Warmuth
,
A. R.
,
Pearson
,
S. R.
, and
Shipway
,
P. H.
,
2015
, “
The Influence of Surface Hardness on the Fretting Wear of Steel Pairs—Its Role in Debris Retention in the Contact
,”
Tribol. Int.
,
81
(
1
), pp.
258
266
. 10.1016/j.triboint.2014.09.003
28.
Konyashin
,
I.
,
Ries
,
B.
,
Hlawatschek
,
D.
,
Zhuk
,
Y.
,
Mazilkin
,
A.
,
Straumal
,
B.
,
Dorn
,
F.
, and
Park
,
D.
,
2015
, “
Wear-Resistance and Hardness: Are They Directly Related for Nanostructured Hard Materials
,”
Int. J. Refract. Met. Hard Mater.
,
49
(
1
), pp.
203
211
. 10.1016/j.ijrmhm.2014.06.017
29.
Kontou
,
A.
,
Southby
,
M.
, and
Spikes
,
H. A.
,
2017
, “
Effect of Steel Hardness on Soot Wear
,”
Wear
,
390–391
(
11
), pp.
236
245
. 10.1016/j.wear.2017.07.020
30.
Rigney
,
D. A.
,
1994
, “
The Roles of Hardness in the Sliding Behavior of Materials
,”
Wear
,
175
(
1–2
), pp.
63
69
. 10.1016/0043-1648(94)90169-4
31.
Bian
,
S.
,
Maj
,
S.
, and
Borland
,
D. W.
,
1993
, “
The Unlubricated Sliding Wear of Steels: The Role of the Hardness of the Friction Pair
,”
Wear
,
166
(
1
), pp.
1
5
. 10.1016/0043-1648(93)90272-N
32.
Viáfara
,
C. C.
, and
Sinatora
,
A.
,
2009
, “
Influence of Hardness of the Harder Body on Wear Regime Transition in a Sliding Pair of Steels
,”
Wear
,
267
(
1
), pp.
425
432
. 10.1016/j.wear.2008.11.019
33.
Sun
,
L. M.
,
Li
,
A. N.
, and
Hou
,
M.
,
2006
, “
The Wear Tests of Friction Pairs With Hardness Difference to Find the Optimum Combination
,”
J. Henan Univ. Sci. Technol. Nat. Sci. Ed.
,
27
(
5
), pp.
5
8
.
34.
Ma
,
J. B.
, and
Sun
,
H.
,
2001
, “
Study on the Influence of Hardness Difference of Friction Pair on Wear Life
,”
J. Liaoning Prov. Coll. Commun.
,
3
(
1
), pp.
6
8
.
35.
Borland
,
D. W.
, and
Bian
,
S.
,
1997
, “
Unlubricated Sliding Wear of Steels: Towards an Alternative Wear Equation
,”
Wear
,
209
(
1–2
), pp.
171
178
. 10.1016/S0043-1648(96)07478-9
You do not currently have access to this content.