Abstract

This paper presents a partitioned strongly coupled fluid–solid interaction (FSI) model to solve the 2D elastohydrodynamic (EHD) lubrication problem. The FSI model passes information between a control volume finite-difference discretized Reynolds equation and abaqus finite element (fe) software to solve for the fluid pressure and elastic deformation within heavily loaded lubricated contacts. Pressure and film thickness results obtained from the FSI model under a variety of load and speed conditions were corroborated with open published results. The results are in excellent agreement. Details of the model developed for this investigation are presented with a focus on the simultaneous solution of the Reynolds equation, load balance, and the coupling of the solid abaqus fe with the finite-difference fluid (Reynolds) model. The coupled FSI model developed for this investigation provides the critical venue needed to investigate many important tribological phenomena such as plasticity, subsurface stress, and damage. The current FSI model was used to explore and demonstrate the efficacy of the model to investigate the effects of microstructure inhomogeneity, material fatigue damage, and surface features on heavily loaded lubricated contacts as can be found in a wide range of industrial, automotive, and aeronautical drive systems.

References

References
1.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
. 10.1002/ls.23
2.
Ertel
,
A. M.
,
1939
, “
Hydrodynamic Lubrication Based on New Principles
,”
Akad. Nauk SSSR Prikadnaya Math. i Mekhanika
,
3
(
2
), pp.
41
52
.
3.
Petrusevich
,
A. I.
,
1951
, “
Fundamental Conclusions From the Contact-Hydrodynamic Theory of Lubrication
,”
Izv. Akad. Nauk. SSSR
,
3
(
2
), pp.
209
223
.
4.
Dowson
,
B. D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
. 10.1243/JMES_JOUR_1959_001_004_02
5.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Int.
,
54
(
3
), pp.
470
496
. 10.1080/10402004.2010.551804
6.
Lubrecht
,
A. A.
,
Napel
,
W. E.
, and
Bosma
,
R.
,
1986
, “
Multigrid, an Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
108
(
4
), pp.
551
556
. 10.1115/1.3261260
7.
Houpert
,
L. G.
, and
Hamrock
,
B. J.
,
1986
, “
Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads M)
,”
ASME J. Tribol.
,
108
(
3
), pp.
411
419
. 10.1115/1.3261220
8.
Slack
,
T. S.
,
Raje
,
N.
,
Sadeghi
,
F.
,
Doll
,
G.
, and
Hoeprich
,
M. R.
,
2007
, “
EHL Modeling for Nonhomogeneous Materials: The Effect of Material Inclusions
,”
ASME J. Tribol.
,
129
(
2
), pp.
256
273
. 10.1115/1.2540234
9.
Xu
,
G.
,
Nickel
,
D. A.
,
Sadeghi
,
F.
, and
Ai
,
X.
,
1996
, “
Elastoplastohydrodynamic Lubrication With Dent Effects
,”
J. Eng. Tribol.
,
210
(
4
), pp.
223
245
.
10.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
482
. 10.1115/1.2831560
11.
Sadeghi
,
F.
, and
Sui
,
P. C.
,
1990
, “
Thermal Elastohydrodynamic Lubrication of Rolling/Sliding
,”
ASME J. Tribol.
,
112
(
2
), pp.
189
195
. 10.1115/1.2920241
12.
Paulson
,
N. R.
, and
Sadeghi
,
F.
,
2017
, “
EHL Modeling of Nonhomogeneous Materials: The Effects of Polycrystalline Anisotropy on RCF
,”
Tribol. Int.
,
112
, pp.
137
146
. 10.1016/j.triboint.2017.04.007
13.
Wang
,
Z.
,
Dong
,
Z.
, and
Wang
,
Q.
,
2014
, “
Elastohydrodynamic Lubrication of Inhomogeneous Materials Using the Equivalent Inclusion Method
,”
ASME J. Tribol.
,
136
(
2
), pp.
1
10
. 10.1115/1.4025939
14.
Hartinger
,
M.
,
Dumont
,
M.-L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), pp.
1
16
. 10.1115/1.2958077
15.
Cerullo
,
M.
, and
Tvergaard
,
V.
,
2015
, “
Micromechanical Study of the Effect of Inclusions on Fatigue Failure in a Roller Bearing
,”
Int. J. Struct. Integr.
,
6
(
1
), pp.
124
141
. 10.1108/IJSI-04-2014-0020
16.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point
,”
ASME J. Tribol.
,
130
(
2
), pp.
1
10
. 10.1115/1.2842246
17.
Paulson
,
N. R.
,
Sadeghi
,
F.
, and
Habchi
,
W.
,
2017
, “
A Coupled Finite Element EHL and Continuum Damage Mechanics Model for Rolling Contact Fatigue
,”
Tribol. Int.
,
107
, pp.
173
183
. 10.1016/j.triboint.2016.11.024
18.
Lai
,
J.
, and
Stadler
,
K.
,
2018
, “
Investigation on the Mechanisms of White Etching Crack (WEC) Formation in Rolling Contact Fatigue and Identification of a Root Cause for Bearing Premature Failure Investigation on the Mechanisms of White Etching Crack (WEC) Formation in Rolling Contact Fatigue and Identi Fi Cation of a Root Cause for Bearing Premature Failure
,”
Wear
,
364–365
, pp.
244
256
. 10.1016/j.wear.2016.08.001
19.
Morris
,
D.
,
Chen
,
Y.
,
Wang
,
C.
, and
Wang
,
B.
,
2018
, “
Effect of Residual Stresses on Microstructural Evolution Due to Rolling Contact Fatigue
,”
ASME J. Tribol.
,
140
(
6
), p.
061402
. 10.1115/1.4040051
20.
Mobasher Moghaddam
,
S.
,
Sadeghi
,
F.
,
Weinzapfel
,
N.
, and
Liebel
,
A.
,
2015
, “
A Damage Mechanics Approach to Simulate Butterfly Wing Formation Around Non-Metallic Inclusions
,”
ASME J. Tribol.
,
137
(
1
), p.
011404
. 10.1115/1.4028628
21.
Alley
,
E. S.
, and
Neu
,
R. W.
,
2010
, “
Microstructure-Sensitive Modeling of Rolling Contact Fatigue
,”
Int. J. Fatigue
,
32
(
5
), pp.
841
850
. 10.1016/j.ijfatigue.2009.07.012
22.
Moghaddam
,
S. M.
, and
Sadeghi
,
F.
,
2016
, “
A Review of Microstructural Alterations Around Nonmetallic Inclusions in Bearing Steel During Rolling Contact Fatigue
,”
Tribol. Trans.
,
59
(
6
), pp.
1142
1156
. 10.1080/10402004.2016.1141447
23.
Stiénon
,
A.
,
Fazekas
,
A.
,
Buffière
,
J. Y.
,
Vincent
,
A.
,
Daguier
,
P.
, and
Merchi
,
F.
,
2009
, “
A New Methodology Based on X-Ray Micro-Tomography to Estimate Stress Concentrations Around Inclusions in High Strength Steels
,”
Mater. Sci. Eng. A
,
513–514
, pp.
376
383
. 10.1016/j.msea.2009.02.008
24.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
281
. 10.1016/j.ijfatigue.2016.11.003
25.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
. 10.1016/j.triboint.2010.03.019
26.
Xiao
,
Y.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
. 10.1016/S0142-1123(98)00005-X
27.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
. 10.1115/1.2959109
28.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (P-S-N) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
52
(
6
), pp.
807
816
. 10.1080/10402000903125345
29.
Mobasher Moghaddam
,
S.
,
Sadeghi
,
F.
,
Paulson
,
K.
,
Weinzapfel
,
N.
,
Correns
,
M.
,
Bakolas
,
V.
, and
Dinkel
,
M.
,
2015
, “
Effect of Non-Metallic Inclusions on Butterfly Wing Initiation, Crack Formation, and Spall Geometry in Bearing Steels
,”
Int. J. Fatigue
,
80
, pp.
203
215
. 10.1016/j.ijfatigue.2015.05.010
30.
Raje
,
N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Hoeprich
,
M. R.
,
2008
, “
A Numerical Model for Life Scatter in Rolling Element Bearings
,”
ASME J. Tribol.
,
130
(
1
), p.
011011
. 10.1115/1.2806163
31.
Pan
,
P.
, and
Hamrock
,
B. J.
,
1989
, “
Simple Formulas for Performance Parameters Used in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
111
(
2
), pp.
246
251
. 10.1115/1.3261900
32.
Venner
,
C. H.
, and
Napel
,
W. E.
,
1992
, “
Surface Roughness Effects in an EHL Line Contact
,”
ASME J. Tribol.
,
114
(
3
), pp.
616
622
. 10.1115/1.2920926
33.
Nélias
,
D.
,
Dumont
,
M. L.
,
Champiot
,
F.
,
Vincent
,
A.
,
Girodin
,
D.
,
Fougéres
,
R.
, and
Flamand
,
L.
,
1999
, “
Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
121
(
2
), pp.
240
251
. 10.1115/1.2833927
34.
Xu
,
G.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
,
1998
, “
Dent Initiated Spall Formation in EHL Rolling/Sliding Contact
,”
ASME J. Tribol.
,
120
(
3
), pp.
453
462
. 10.1115/1.2834570
35.
Golmohammadi
,
Z.
,
Walvekar
,
A.
, and
Sadeghi
,
F.
,
2018
, “
A 3D Efficient Finite Element Model to Simulate Rolling Contact Fatigue Under High Loading Conditions
,”
Tribiology Int.
,
126
, pp.
258
269
. 10.1016/j.triboint.2018.05.029
36.
Jalalahmadi
,
B.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2011
, “
Material Inclusion Factors for Lundberg-Palmgren–Based Rcf Life Equations
,”
Tribol. Trans.
,
54
(
3
), pp.
457
469
. 10.1080/10402004.2011.560412
37.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T.
,
Raje
,
N.
, and
Arakere
,
N.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
. 10.1115/1.3209132
38.
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Bakolas
,
V.
, and
Liebel
,
A.
,
2011
, “
A 3D Finite Element Study of Fatigue Life Dispersion in Rolling Line Contacts
,”
ASME J. Tribol.
,
133
(
4
), p.
042202
. 10.1115/1.4005000
39.
Vijay
,
A.
,
Paulson
,
N.
, and
Sadeghi
,
F.
,
2018
, “
A 3D Finite Element Modelling of Crystalline Anisotropy in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
106
, pp.
92
102
. 10.1016/j.ijfatigue.2017.09.016
You do not currently have access to this content.