Abstract

Thermoelastic instabilities (TEI) occur in sliding bodies at sufficiently high speed because a small thermoelastic disturbance tends to localize the contact, leading to “hot spots.” The role that wear plays in TEI has been studied briefly and only on highly idealized cases. We extend and complete in detail a model of Dow and Burton who studied the specific configuration of a blade sliding on a rigid half-space normal to its line of contact. We find there is a limit value of wear coefficient that can be estimated by simple equations, above which TEI is completely eliminated. In the limiting case of non-conducting half-space, it depends linearly on thermal expansion, diffusivity, and friction coefficient and inversely on the conductance of the material of the sliding body. This may not always be in the practical range, but when considering conductance of the half-space, the limit wear can be lowered arbitrarily so as to be viable. In some applications, it may be possible to increase wear to reduce or suppress TEI. Hence, the common assumption of neglecting wear in simulations of sliding contacts with TEI and hotspots should be taken with care, and the present results give some important benchmarks.

References

References
1.
Barber
,
J. R.
,
1969
, “
Thermoelastic Instabilities in the Sliding of Conforming Solids
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
312
(
1510
), pp.
381
394
. 10.1098/rspa.1969.0165
2.
Ho
,
T. L.
,
Peterson
,
M. B.
, and
Ling
,
F. F.
,
1974
, “
Effect of Frictional Heating on Braking Materials
,”
Wear
,
30
, pp.
73
91
.
3.
Kennedy
,
F. E.
, and
Ling
,
F. F.
,
1974
, “
A Thermal, Thermoelastic and Wear Simulation of a High Energy Sliding Contact Problem
,”
ASME J. Lub. Tech.
,
96
(
3
), pp.
497
505
. 10.1115/1.3452024
4.
Kennedy
,
F. E.
,
1984
, “
Thermal and Thermomechanical Effects in Dry Sliding
,”
Wear
,
100
(
1–3
), pp.
453
476
. 10.1016/0043-1648(84)90026-7
5.
Burton
,
R. A.
,
1980
, “
Thermal Deformation in Frictionally Heated Contact
,”
Wear
,
59
(
1
), pp.
1
20
. 10.1016/0043-1648(80)90266-5
6.
Day
,
A. J.
,
Tirovic
,
M.
, and
Newcomb
,
T. P.
,
1991
, “
Thermal Effects and Pressure Distributions in Brakes
,”
Proc. Inst. Mech. Eng., Part D: J. Autom. Eng.
,
205
(
3
), pp.
199
205
. 10.1243/PIME_PROC_1991_205_171_02
7.
Lee
,
K.
, and
Barber
,
J. R.
,
1993
, “
Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes
,”
ASME J. Tribol.
,
115
, pp.
607
614
. 10.1115/1.2921683
8.
Zagrodzki
,
P.
,
1991
, “
Influence of Design and Material Factors on Thermal Stresses in Multiple Disk Wet Clutches and Brakes
,”
SAE 911883
.
9.
Barber
,
J. R.
,
Beamond
,
T. W.
,
Waring
,
J. R.
, and
Pritchard
,
C.
,
1985
, “
Implications of Thermoelastic Instability for the Design of Brakes
,”
ASME J. Tribol.
,
107
, pp.
206
210
. 10.1115/1.3261021
10.
Kreitlow
,
W.
,
Schrödter
,
F.
, and
Matthäi
,
H.
,
1985
, “
Vibration and Hum of Disc Brakes Under Load
,”
SAE 850079
.
11.
Abendroth
,
H.
,
1985
, “
A New Approach to Brake Testing
,”
SAE 850080
.
12.
Anderson
,
A. E.
, and
Knapp
,
R. A.
,
1989
, “
Hot Spotting in Automotive Friction Systems
,”
Int. Conf. Wear Mater.
,
135
(
2
), pp.
673
680
.
13.
Thoms
,
E.
,
1988
, “
Disc Brakes for Heavy Vehicles
,”
International Conference on Disc Brakes Commercial Vehicles
,
Institute of Mechanical Engineers, London
.
14.
Howell
,
P. D.
,
Barber
,
J. R.
, and
Ockendon
,
J. R.
,
2018
, “
Multiple-Contact Thermoelastic Oscillations
,”
J. Thermal Stresses
,
41
(
10–12
), pp.
1329
1345
. 10.1080/01495739.2018.1487268
15.
Dow
,
T. A.
, and
Burton
,
R. A.
,
1972
, “
Thermoelastic Instability of Sliding Contact in the Absence of Wear
,”
Wear
,
19
(
3
), pp.
315
328
. 10.1016/0043-1648(72)90123-8
16.
Afferrante
,
L.
,
Ciavarella
,
M.
,
Decuzzi
,
P.
, and
Demelio
,
G.
,
2003
, “
Transient Analysis of Frictionally Excited Thermoelastic Instability in Multi-Disk Clutches and Brakes
,”
Wear
,
254
(
1–2
), pp.
136
146
. 10.1016/S0043-1648(02)00306-X
17.
Zagrodzki
,
P.
,
1990
, “
Analysis of Thermomechanical Phenomena in Multidisc Clutches and Brakes
,”
Wear
,
140
(
2
), pp.
291
308
. 10.1016/0043-1648(90)90091-N
18.
Sonn
,
H. W.
,
Kim
,
C. G.
,
Hong
,
C. S.
, and
Yoon
,
B. I.
,
1995
, “
Transient Thermoelastic Analysis of Composite Brake Disks
,”
J. Reinforced Plastics Compos.
,
14
(
12
), pp.
1337
1361
. 10.1177/073168449501401206
19.
Liu
,
J.
,
Wang
,
Y. S.
,
Ke
,
L. L.
, and
Yang
,
J.
,
2016
, “
Thermo-Elastic Dynamic Instability of An Elastic Half-Plane Sliding Against a Coated Half-Plane
,”
Int. J. Mech. Sci.
,
117
, pp.
275
285
. 10.1016/j.ijmecsci.2016.09.005
20.
Mao
,
J. J.
,
Ke
,
L. L.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Wang
,
Y. S.
,
2018
, “
The Coupled Thermoelastic Instability of FGM Coatings With Arbitrarily Varying Properties: In-Plane Sliding
,”
Acta Mech.
,
229
(
7
), pp.
2979
2995
. 10.1007/s00707-018-2150-2
21.
Mao
,
J. J.
,
Ke
,
L. L.
,
Wang
,
Y. S.
, and
Liu
,
J.
,
2016
, “
Frictionally Excited Thermoelastic Instability of Functionally Graded Materials Sliding Out-of-Plane With Contact Resistance
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021010
. 10.1115/1.4031974
22.
Samanta
,
P.
, and
Khonsari
,
M. M.
,
2018
, “
On the Thermoelastic Instability of Foil Bearings
,”
Tribol. Int.
,
121
, pp.
10
20
. 10.1016/j.triboint.2018.01.014
23.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2020
, “
“The Effect of Wear on ThermoElastic Instabilities (TEI) in Bimaterial Interfaces
,”
Tribol. Int.
,
142
, p.
105977
. 10.1016/j.triboint.2019.105977
24.
Dow
,
T. A.
, and
Burton
,
R. A.
,
1973
, “
The Role of Wear in the Initiation of Thermoelastic Instabilities of Rubbing Contact
,”
J. Lubr. Technol., Trans. ASME, Ser. F
,
95
(
1
), pp.
71
75
. 10.1115/1.3451739
25.
Grigoratos
,
T.
, and
Martini
,
G.
,
2015
, “
Brake Wear Particle Emissions: A Review
,”
Environ. Sci. Pollution Res.
,
22
(
4
), pp.
2491
2504
. 10.1007/s11356-014-3696-8
26.
Reye
,
T.
,
1860
, “
Zur Theorie Der Zapfenreibung
,”
Der Civilingenieur
,
4
, pp.
235
255
.
27.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J. F.
,
2017
, “
On the Debris-level Origins of Adhesive Wear
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
30
), pp.
7935
7940
. 10.1073/pnas.1700904114
28.
Frérot
,
L.
,
Aghababaei
,
R.
, and
Molinari
,
J. F.
,
2018
, “
A Mechanistic Understanding of the Wear Coefficient: From Single to Multiple Asperities Contact
,”
J. Mech. Phys. Solids
,
114
, pp.
172
184
. 10.1016/j.jmps.2018.02.015
29.
Verma
,
P. C.
,
2016
, “
Automotive Brake Materials: Characterization of Wear Products and Relevant Mechanisms At High Temperature
,”
Doctoral dissertation
,
University of Trento
, http://eprints-phd.biblio.unitn.it/1660/1/Piyush_Chandra_Verma__PhD_Thesis.pdf
30.
Du
,
S.
, and
Fash
,
J. W.
,
2000
, “
Finite Element Analysis of Frictionally-Excited Thermoelastic Instability in 3D Annular Disk
,”
Int. J. Veh. Des.
,
23
(
3–4
), pp.
203
217
. 10.1504/IJVD.2000.001892
31.
Graf
,
M.
, and
Ostermeyer
,
G. P.
,
2014
, “
Efficient Computation of Thermoelastic Instabilities in the Presence of Wear
,”
Wear
,
312
(
1–2
), pp.
11
20
. 10.1016/j.wear.2014.01.008
32.
Hsu
,
S. M.
, and
Shen
,
M.
,
2004
, “
Wear Prediction of Ceramics
,”
Wear
,
256
(
9–10
), pp.
867
878
. 10.1016/j.wear.2003.11.002
You do not currently have access to this content.