The microstructural morphology and wear behavior of as-cast Al–X wt% Mg2Si (X = 0.0, 5.0, 10.0, 15.0, and 20.0) composites were investigated through optical microscopy (OM), energy dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), and field emission scanning electron microscopy (FESEM). The dry sliding wear behavior was studied against an EN 31 hardened steel disk at four different applied loads (19.6 N, 29.4 N, 39.2 N, and 49 N) with a sliding speed of 62.8 m/min for 1 h. The optical microscopy analysis exhibits that the primary Mg2Si particles average equivalent diameter and volume fraction are increased with an increase in Mg2Si (Mg and Si) concentration in the Al–Mg2Si composite. Therefore, the bulk hardness of the composites is increased, whereas the primary Mg2Si hardness decreased because the coarser primary Mg2Si particles have less compactness. The wear resistance of the commercially pure aluminum significantly improved due to Mg2Si reinforcement, and the wear resistance is increased with the increase in Mg2Si concentration up to 15.0 wt% and then decreased at 20.0 wt%. The tested composites worn surfaces and debris exhibit adhesion, delamination, microcutting-abrasion, abrasive- and oxidation-type wear mechanism.

References

1.
Sun
,
Y.
,
Li
,
C.
,
Liu
,
Y.
,
Yu
,
L.
, and
Li
,
H.
,
2018
, “
Intermetallic Phase Evolution and Strengthening Effect in Al–Mg2Si Alloys With Different Cu/Ni Ratios
,”
Mater. Lett.,
215
, pp.
254
258
.
2.
Mirshahi
,
F.
, and
Meratian
,
M.
,
2012
, “
High Temperature Tensile Properties of Modified Mg/Mg2Si In Situ Composite
,”
Mater. Des.,
33
, pp.
557
562
.
3.
Li
,
L. L.
,
Chen
,
T. J.
,
Zhang
,
S. Q.
, and
Yan
,
F. Y.
,
2017
, “
Electrochemical Cold Drawing of In Situ Mg2Sip/AM60B Composite: A Comparison With the AM60B Alloy
,”
J. Mater. Process. Technol.,
240
, pp.
33
41
.
4.
Chelliah
,
N. M.
,
Singh
,
H.
, and
Surappa
,
M. K.
,
2017
, “
Microstructural Evolution and Strengthening Behavior in In-Situ Magnesium Matrix Composites Fabricated by Solidification Processing
,”
Mater. Chem. Phys.,
194
, pp.
65
76
.
5.
Malekan
,
A.
,
Emamy
,
M.
,
Rassizadehghani
,
J.
, and
Emami
,
A. R.
,
2011
, “
The Effect of Solution Temperature on the Microstructure and Tensile Properties of Al–15% Mg2Si Composite
,”
Mater. Des.,
32
(
5
), pp.
2701
2709
.
6.
Rahvard
,
M. M.
,
Tamizifar
,
M.
,
Boutorabi
,
S. M. A.
, and
Shiri
,
S. G.
,
2014
, “
Characterization of the Graded Distribution of Primary Particles and Wear Behavior in the A390 Alloy Ring With Various Mg Contents Fabricated by Centrifugal Casting
,”
Mater. Des.,
56
, pp.
105
114
.
7.
Gao
,
Q.
,
Wu
,
S.
,
,
S.
,
Duan
,
X.
, and
Zhong
,
Z.
,
2015
, “
Preparation of In-Situ TiB2 and Mg2Si Hybrid Particulates Reinforced Al-Matrix Composites
,”
J. Alloys Compd.,
651
, pp.
521
527
.
8.
Li
,
Z.
,
Li
,
C.
,
Liu
,
Y. C.
,
Yu
,
L.
,
Guo
,
Q.
, and
Li
,
H.
,
2016
, “
Effect of Heat Treatment on Microstructure and Mechanical Property of Al–10% Mg2Si Alloy
,”
J. Alloys Compd.,
663
, pp.
16
19
.
9.
Wang
,
D.
,
Zhang
,
H.
,
Qin
,
K.
,
Han
,
X.
,
Shao
,
B.
,
Zuo
,
K.
, and
Cui
,
J.
,
2017
, “
Effect of Direct Chill Casting Speed and Heat Treatment on Microstructure and Mechanical Properties of Al-13.9% Mg2Si Composite
,”
Mater. Sci. Forum
,
877
, pp.
15
19
.
10.
Ram
,
S. C.
,
Chattopadhyay
,
K.
, and
Chakrabarty
,
I.
,
2017
, “
High Temperature Tensile Properties of Centrifugally Cast In-Situ Al-Mg2Si Functionally Graded Composites for Automotive Cylinder Block Liners
,”
J. Alloys Compd.,
724
, pp.
84
97
.
11.
Biswas
,
P.
,
Mondal
,
M. K.
,
Roy
,
H.
, and
Mandal
,
D.
,
2017
, “
Microstructural Evolution and Hardness Property of In Situ Al–Mg2Si Composites Using One-Step Gravity Casting Method
,”
Can. Metall. Q.
,
56
(
3
), pp.
340
348
.
12.
Li
,
G.
,
An
,
Q.
,
Morozov
,
S. I.
,
Duan
,
B.
,
Goddard
,
W. A.
, III
,
Zhai
,
P.
,
Zhang
,
Q.
, and
Snyder
,
G. J.
,
2018
, “
Mechanical Softening of Thermoelectric Semiconductor Mg2Si From Nano Twinning
,”
Scripta Mater.,
157
, pp.
90
94
.
13.
Zamani
,
R.
,
Mirzadeh
,
H.
, and
Emamy
,
M.
,
2018
, “
Mechanical Properties of a Hot Deformed Al-Mg2Si In-Situ Composite
,”
Mater. Sci. Eng. A
,
726
, pp.
10
17
.
14.
Tong
,
X.
,
Zhang
,
D.
,
Wang
,
K.
,
Lin
,
J.
,
Liu
,
Y.
,
Shi
,
Z.
,
Li
,
Y.
,
Lin
,
J.
, and
Wen
,
C.
,
2018
, “
Microstructure and Mechanical Properties of High-Pressure-Assisted Solidification of In Situ Al–Mg2Si Composites
,”
Mater. Sci. Eng. A
,
733
, pp.
9
15
.
15.
David
,
R.
,
Dasgupta
,
R.
, and
Prasad
,
B. K.
,
2018
, “
Effect of Fine TiC Particle Reinforcement on the Dry Sliding Wear Behaviour of In-Situ Synthesized ZA27 Alloy
,”
ASME J. Tribol.,
141
(
2
), p.
021605
.
16.
Nadim
,
A.
,
Taghiabadi
,
R.
, and
Razaghian
,
A.
,
2018
, “
Effect of Mn Modification on the Tribological Properties of In Situ Al-15Mg2Si Composites Containing Fe as an Impurity
,”
ASME J. Tribol.,
140
(
6
), p.
061610
.
17.
Sun
,
Y.
, and
Ahlatci
,
H.
,
2011
, “
Mechanical and Wear Behaviors of Al–12Si XMg Composites Reinforced With In Situ Mg2Si Particles
,”
Mater. Des.,
32
(
5
), pp.
2983
2987
.
18.
Wu
,
X.-F.
,
Zhang
,
G.-G.
, and
Wu
,
F.-F.
,
2013
, “
Microstructure and Dry Sliding Wear Behavior of Cast Al–Mg2Si In-Situ Metal Matrix Composite Modified by Nd
,”
Rare Met.
,
32
(
3
), pp.
284
289
.
19.
Jafari Nodooshan
,
H. R.
,
Liu
,
W.
,
Wu
,
G.
,
Bahrami
,
A.
,
Pech-Canul
,
M. I.
, and
Emamy
,
M.
,
2014
, “
Mechanical and Tribological Characterization of Al-Mg2Si Composites After Yttrium Addition and Heat Treatment
,”
J. Mater. Eng. Perform.
,
23
(
4
), pp.
1146
1156
.
20.
Soltani
,
N.
,
Jafari Nodooshan
,
H. R.
,
Bahrami
,
A.
,
Pech-Canul
,
M. I.
,
Liu
,
W.
, and
Wu
,
G.
,
2014
, “
Effect of Hot Extrusion on Wear Properties of Al-15 wt% Mg2Si In Situ Metal Matrix Composites
,”
Mater. Des.,
53
, pp.
774
781
.
21.
Saghafian
,
H.
,
Shabestari
,
S. G.
,
Ghoncheh
,
M. H.
, and
Sahlhi
,
F.
,
2015
, “
Wear Behavior of Thixoformed Al-25 wt% Mg2Si Composites Produced by Slope Casting Method
,”
Tribol. Trans.
,
58
(
2
), pp.
288
299
.
22.
Ebrahimi
,
M.
,
Hanzaki
,
A. Z.
,
Abedi
,
H. R.
,
Azimi
,
M.
, and
Mirjavdi
,
S.
,
2017
, “
Correlating the Microstructure to Mechanical Properties and Wear Behavior of an Accumulative Back Extruded Al-Mg2Si In-Situ Composite
,”
Tribol. Int.,
115
, pp.
199
211
.
23.
Reddy
,
A. S.
,
Pramila Bai
,
B. N.
,
Murthy
,
K. S. S.
, and
Biswas
,
S. K.
,
1994
, “
Wear and Seizure of Binary Al-Si Alloys
,”
Wear
,
171
(
1–2
), pp.
115
127
.
24.
Show
,
B. K.
,
Mondal
,
D. K.
, and
Maity
,
J.
,
2014
, “
Wear Behavior of a Novel Aluminum-Based Hybrid Composite
,”
Metall. Mater. Trans. A
,
45
(
2
), pp.
1027
1040
.
You do not currently have access to this content.