Engineered surfaces (ground and similarly structured rough surfaces) show anisotropic characteristics and their topography parameters are direction dependent. Statistical characterization of these surfaces is still complex because of directional nature of surfaces. In this technical brief, an attempt is made to simulate anisotropic surfaces through use of topography parameters (three-dimensional (3D) surface parameters). First, 3D anisotropic random Gaussian rough surface is generated numerically with fast Fourier transform (FFT). Numerically generated anisotropic random Gaussian rough surface shows statistical properties (texture direction, texture ratio) similar to ground and similarly directional anisotropic rough surfaces. For numerically generated anisotropic Gaussian rough surface, important 3D roughness parameters are determined. Sayles and Thomas' (1976, “Thermal Conductance of Rough Elastic Contact,” Appl. Energy, 2(4), pp. 249–267.) theoretical model for directional anisotropic rough surface is adopted here for calculating the summit parameters, i.e., equivalent bandwidth parameter, mean summit curvature, skewness of summit height, standard deviation of summit height, and equivalent spectral moments. This work demonstrates the variation of spectral moments in both across and parallel to the lay directions with pattern ratio (γ=βx/βy). Correlation length (βx) is fixed 10μm and correlation length (βy) is varied from 100 to 10 μm. Variation of summit parameters with pattern ratio is also discussed in detail. Results shows that mean summit curvature and skewness of summit heights increase with increase in pattern ratio, whereas standard deviation of summit heights and equivalent bandwidth parameter (αe) decreases with pattern ratio. A significant difference is found in “Abbott-Firestone” parameters when calculated in both perpendicular and parallel to lay directions. Effect of these parameters on wear process is discussed in brief.

References

1.
Bhushan
,
B.
,
2013
,
Principles and Applications of Tribology
, 2nd ed.,
Wiley
,
Chichester, UK
, pp.
9
82
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A
,
295
(
1442
), pp.
300
319
.
3.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
.
4.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1970
), pp.
625
634
.
5.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.
6.
Tomanik
,
E.
,
Chacon
,
H.
, and
Teixeira
,
G.
,
2003
, “
A Simple Numerical Procedure to Calculate the Input Data of Greenwood-Williamson Model of Asperity Contact for Actual Engineering Surfaces
,”
Tribol. Interface Eng. Ser.
,
41
, pp.
205
215
.
7.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptical Model for Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.
8.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London A
,
327
(
1569
), pp.
159
173
.
9.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
10.
Etsion
,
I.
, and
Amit
,
M.
,
1993
, “
The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces
,”
ASME J. Tribol.
,
115
(
3
), pp.
406
410
.
11.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
12.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces
,”
ASME J. Tribol.
,
120
(
1
), pp.
82
88
.
13.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
14.
Zhao
,
Y.
, and
Chang
,
L.
,
2001
, “
A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces
,”
ASME J. Tribol.
,
123
(
4
), pp.
57
64
.
15.
Yu
,
N.
, and
Polycarpou
,
A.
,
2004
, “
Extracting Summit Roughness Parameters From Random Gaussian Surfaces Accounting for Asymmetry of the Summit Heights
,”
ASME J. Tribol.
,
126
(
4
), pp.
761
766
.
16.
Kogut
,
L.
, and
Jackson
,
R.
,
2006
, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME J. Tribol.
,
128
(
1
), pp.
213
217
.
17.
Jackson
,
R. L.
, and
Green
,
I.
,
2011
, “
On the Modeling of Elastic Contact Between Rough Surfaces
,”
Tribol. Trans.
,
54
(
2
), pp.
300
314
.
18.
Pawlus
,
P.
, and
Zelasko
,
W.
,
2012
, “
The Importance of Sampling Interval for Rough Contact Mechanics
,”
Wear
,
276–277
, pp.
121
129
.
19.
Pawar
,
G.
,
Pawel
,
P.
,
Etsion
,
I.
, and
Raeymaekers
,
B.
,
2013
, “
The Effect of Determining Topography Parameters on Analyzing Elastic Contact Between Isotropic Rough Surfaces
,”
ASME J. Tribol.
,
135
(
1
), p.
011401
.
20.
Pawlus
,
P.
,
Reizer
,
R.
, and
Dzierwa
,
A.
,
2015
, “
Simulation of Profiles of Normal Ordinate Distribution
,”
Key Eng. Mater.
,
381–382
, pp.
635
638
.
21.
Longuet-Higgins
,
M. S.
,
1957
, “
The Statistical Analysis of Random Moving Surfaces
,”
Philos. Trans. R. Soc.
,
249
(
966
), pp.
321
387
.
22.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surface
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
398
407
.
23.
Nayak
,
P. R.
,
1973
, “
Some Aspect of Surface Roughness Measurement
,”
Wear
,
26
(
2
), pp.
165
174
.
24.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1976
, “
Thermal Conductance of Rough Elastic Contact
,”
Appl. Energy
,
2
(
4
), pp.
249
267
.
25.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. D.
,
1979
, “
Strong Anisotropic Rough Surface
,”
ASME J. Tribol.
,
101
, pp.
15
20
.
26.
So
,
H.
, and
Liu
,
D. C.
,
1991
, “
An Elastic-Plastic Model for Anisotropic Rough Surfaces
,”
Wear
,
146
(
2
), pp.
201
218
.
27.
McCool
,
J. I.
,
1978
, “
Characterization of Surface Anisotropy
,”
Wear
,
49
(
1
), pp.
19
31
.
28.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurements of the Statistical Properties of Engineering Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
4
), pp.
409
417
.
29.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
,
1992
, “
Comparative Study of Parameters for Characterizing Three-Dimensional Surface Topography I: Some Inherent Properties of Parameters Variation
,”
Wear
,
159
(
2
), pp.
161
171
.
30.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
,
1993
, “
Comparative Study of Parameters for Characterizing Three-Dimensional Surface Topography II: Statistical Properties of Parameters Variation
,”
Wear
,
167
(
1
), pp.
9
21
.
31.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
,
1994
, “
Comparative Study of Parameters for Characterizing Three-Dimensional Surface Topography III: Parameters for Characterizing Amplitude and Some Functional Properties
,”
Wear
,
178
(1–2), pp.
29
43
.
32.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
,
1994
, “
Comparative Study of Parameters for Characterizing Three-Dimensional Surface Topography IV: Parameters for Characterizing Spatial and Hybrid Properties
,”
Wear
,
178
(
1–2
), pp.
45
60
.
33.
Manesh
,
K.
,
Ramamoorthy
,
B.
, and
Singaperumal
,
M.
,
2010
, “
Numerical Generation of Anisotropic 3D Non-Gaussian Engineering Surfaces With Specified 3D Surface Roughness Parameters
,”
Wear
,
268
(
11–12
), pp.
1371
1379
.
34.
Reizer
,
R.
,
2011
, “
Simulation of 3D Gaussian Surface Topography
,”
Wear
,
271
(
3–4
), pp.
539
543
.
35.
Wu
,
J. J.
,
2000
, “
Simulation of Rough Surfaces With FFT
,”
Tribol. Int.
,
33
(
1
), pp.
47
58
.
36.
Newland
,
D. E.
,
1984
,
An Introduction to Random Vibration and Spectral Analysis
, 2nd ed.,
Longman
,
London
.
37.
Li
,
S.
,
2015
, “
A Computational Study on the Influence of Surface Roughness Lay Directionality on Micropitting Lubricated Point Contacts
,”
ASME J. Tribol.
,
137
(
2
), pp.
401
410
.
38.
Hu
,
Y.
, and
Tonder
,
K.
,
1992
, “
Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
,
32
(
1–2
), pp.
83
90
.
39.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London A
,
316
(
1524
), pp.
97
121
.
40.
Thomas
,
T. R.
,
1999
,
Rough Surface
,
Imperial College Press
,
London
, Chaps. 7–9.
41.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
264
270
.
42.
Suh
,
A.
,
Polycarpou
,
A.
, and
Conry
,
T.
,
2003
, “
Detailed Surface Roughness Characterization of Engineering Surfaces Undergoing Tribological Testing Leading to Scuffing
,”
Wear
,
255
(
1–6
), pp.
556
568
.
43.
Xiao
,
L.
,
Rosen
,
B. G.
,
Amini
,
N.
, and
Nilsson
,
P. H.
,
2003
, “
A Study on the Effect of Surface Topography on Rough Friction in Roller Contact
,”
Wear
,
254
(
11
), pp.
1162
1169
.
44.
Lawrence
,
D. K.
,
Shanmugamani
,
R.
, and
Ramamoorthy
,
B.
,
2014
, “
Evaluation of Image Based Abbott-Firestone Curve Parameters Using Machine Vision for the Characterization of Cylinder Liner Surface Topography
,”
Wear
,
55
, pp.
318
334
.
You do not currently have access to this content.