In the current study, a modified fast converging, mass-conserving, and robust algorithm is proposed for calculation of the pressure distribution of a cavitated axially grooved journal bearing based on the finite volume discretization of the Adams/Elrod cavitation model. The solution of cavitation problem is shown to strongly depend on the specific values chosen for the lubricant bulk modulus. It is shown how the new proposed scheme is capable of handling the stiff discrete numerical system for any chosen value of the lubricant bulk modulus (β) and hence a significant improvement in the robustness is achieved compared to traditionally implemented schemes in the literature. Enhanced robustness is shown not to affect the accuracy of the obtained results, and the convergence speed is also shown to be considerably faster than the widely used techniques in the literature. Effects of bulk modulus, static load, and mesh size are studied on numerical stability of the system by means of eigenvalue analysis of the coefficient matrix of the discrete numerical system. It is shown that the impact of static load and mesh size is negligible on numerical stability compared to dominant significance of varying bulk modulus values. Common softening techniques of artificial bulk modulus reduction is found to be tolerable with maximum two order of magnitudes reduction of β to avoid large errors of more than 3–40% in calculated results.

References

1.
Temperley
,
H.
, and
Trevena
,
D.
,
1977
, “
Metastability of Phase Transitions and the Tensile Strength of Liquids
,”
Proc. R. Soc. London, Ser. A
,
357
(
1690
), pp.
395
402
.
2.
Braun
,
M.
, and
Hannon
,
W.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
9
), pp.
839
863
.
3.
Brewe
,
D. E.
,
1986
, “
Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
(
4
), pp.
628
637
.
4.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge, UK
.
5.
Christopherson
,
D. G.
,
1941
, “
A New Mathematical Method for the Solution of Film Lubrication Problems
,”
Proc. Inst. Mech. Eng.
,
146
(
1
), pp.
126
135
.
6.
Ausas
,
R.
,
Ragot
,
P.
,
Leiva
,
J.
,
Jai
,
M.
,
Bayada
,
G.
, and
Buscaglia
,
G. C.
,
2007
, “
The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings
,”
ASME J. Tribol.
,
129
(
4
), pp.
868
875
.
7.
Ausas
,
R. F.
,
Jai
,
M.
, and
Buscaglia
,
G. C.
,
2009
, “
A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation
,”
ASME J. Tribol.
,
131
(
3
), p.
031702
.
8.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
, The Finite Journal Bearing Considering Vaporization (Transactions of Chalmers University of Technology), Vol. 190,
Guthenberg, Sweden
, p.
308
.
9.
Olsson
,
K. O.
,
1965
, Cavitation in Dynamically Loaded Bearing (Transactions of Chalmers University of Technology), Vol. 308,
Guthenberg, Sweden
, p.
308
.
10.
Etsion
,
I.
, and
Ludwig
,
L.
,
1982
, “
Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
157
163
.
11.
Elrod
,
H.
, and
Adams
,
M.
,
1974
, “
A Computer Program for Cavitation and Starvation Problems
,”
Cavitation and Related Phenomena in Lubrication
,
Mechanical Engineering Publications
,
New York
, pp.
37
41
.
12.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Tribol.
,
103
(
3
), pp.
350
354
.
13.
Miranda
,
A.
,
1983
, “
Oil Flow, Cavitation and Film Reformation in Journal Bearings, Including an Interactive Computer-Aided Design Study
,”
Ph.D. thesis
, University of Leeds, Leeds, UK.http://etheses.whiterose.ac.uk/11466/
14.
Hirani
,
H.
,
Athre
,
K.
, and
Biswas
,
S.
,
2001
, “
A Simplified Mass Conserving Algorithm for Journal Bearing Under Large Dynamic Loads
,”
Int. J. Rotating Mach.
,
7
(
1
), pp.
41
51
.
15.
Vijayaraghavan
,
D.
, and
Keith
,
T.
,
1990
, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
,
112
(
1
), pp.
44
51
.
16.
Woods
,
C. M.
, and
Brewe
,
D. E.
,
1989
, “
The Solution of the Elrod Algorithm for a Dynamically Loaded Journal Bearing Using Multigrid Techniques
,”
ASME J. Tribol.
,
111
(
2
), pp.
302
308
.
17.
Qiu
,
Y.
, and
Khonsari
,
M.
,
2009
, “
On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm
,”
ASME J. Tribol.
,
131
(
4
), p.
041702
.
18.
Vijayaraghavan
,
D.
, and
Keith
,
T.
,
1990
, “
Grid Transformation and Adaption Techniques Applied in the Analysis of Cavitated Journal Bearings
,”
ASME J. Tribol.
,
112
(
1
), pp.
52
59
.
19.
Almqvist
,
A.
,
Fabricius
,
J.
,
Larsson
,
R.
, and
Wall
,
P.
,
2014
, “
A New Approach for Studying Cavitation in Lubrication
,”
ASME J. Tribol.
,
136
(
1
), p.
011706
20.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), p.
041702
.
21.
Bertocchi
,
L.
,
Dini
,
D.
,
Giacopini
,
M.
,
Fowell
,
M. T.
, and
Baldini
,
A.
,
2013
, “
Fluid Film Lubrication in the Presence of Cavitation: A Mass-Conserving Two-Dimensional Formulation for Compressible, Piezoviscous and Non-Newtonian Fluids
,”
Tribol. Int.
,
67
, pp.
61
71
.
22.
Sahlin
,
F.
,
Almqvist
,
A.
,
Larsson
,
R.
, and
Glavatskih
,
S.
,
2007
, “
A Cavitation Algorithm for Arbitrary Lubricant Compressibility
,”
Tribol. Int.
,
40
(
8
), pp.
1294
1300
.
23.
Bayada
,
G.
,
2014
, “
From a Compressible Fluid Model to New Mass Conserving Cavitation Algorithms
,”
Tribol. Int.
,
71
, pp.
38
49
.
24.
Braun
,
M.
, and
Hendricks
,
R.
,
1984
, “
An Experimental Investigation of the Vaporous/Gaseous Cavity Characteristics of an Eccentric Journal Bearing
,”
ASLE Trans.
,
27
(
1
), pp.
1
14
.
25.
Giacopini
,
M.
,
Fowell
,
M. T.
,
Dini
,
D.
, and
Strozzi
,
A.
,
2010
, “
A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation
,”
ASME J. Tribol.
,
132
(
4
), p.
041702
.
26.
Vijayaraghavan
,
D.
, and
Keith
,
T.
, Jr.
,
1989
, “
Development and Evaluation of a Cavitation Algorithm
,”
Tribol. Trans.
,
32
(
2
), pp.
225
233
.
27.
Ståhl
,
J.
, and
Jacobson
,
B. O.
,
2003
, “
Compressibility of Lubricants at High Pressures
,”
Tribol. Trans.
,
46
(
4
), pp.
592
599
.
28.
Rao
,
T.
, and
Sawicki
,
J. T.
,
2002
, “
Linear Stability Analysis for a Hydrodynamic Journal Bearing Considering Cavitation Effects
,”
Tribol. Trans.
,
45
(
4
), pp.
450
456
.
29.
Yang
,
L.-H.
,
Wang
,
W.-M.
,
Zhao
,
S.-Q.
,
Sun
,
Y.-H.
, and
Yu
,
L.
,
2014
, “
A New Nonlinear Dynamic Analysis Method of Rotor System Supported by Oil-Film Journal Bearings
,”
Appl. Math. Modell.
,
38
(
21
), pp.
5239
5255
.
30.
Ceze
,
M.
, and
Fidkowski
,
K. J.
,
2015
, “
Constrained Pseudo-Transient Continuation
,”
Int. J. Numer. Methods Eng.
,
102
(
11
), pp.
1683
1703
.
31.
Fesanghary
,
M.
, and
Khonsari
,
M.
,
2011
, “
A Modification of the Switch Function in the Elrod Cavitation Algorithm
,”
ASME J. Tribol.
,
133
(
2
), p.
024501
.
32.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
33.
Jalali
,
A.
,
Sharbatdar
,
M.
, and
Ollivier-Gooch
,
C.
,
2014
, “
Accuracy Analysis of Unstructured Finite Volume Discretization Schemes for Diffusive Fluxes
,”
Comput. Fluids
,
101
, pp.
220
232
.
You do not currently have access to this content.