The fundamental properties of an actively lubricated bearing (ALB) from a control viewpoint are investigated, i.e., the stability, controllability and observability. The ALB involves the addition of an oil injection system to the standard tilting-pad journal bearing (TPJB) to introduce constantly and/or actively high pressurized oil into the rotor-pad gap through, commonly, a single radial nozzle. For the work goal, a four degrees-of-freedom (DOFs) ALB system linking the mechanical with the hydraulic dynamics is presented and studied, comprising: (i) the vertical journal movement, (ii) the pad tilt angle, (iii) the vertical pad movement—due to the pivot flexibility, and (iv) the controllable force as the hydraulic DOF. The test rig consists of a rigid rotor supported by a single rocker-pivoted rigid pad. A thorough parametric study is carried out by investigating the effects of: (a) nozzle-pivot offset, (b) pivot flexibility, and (c) bearing loading on these control basics in order to determine the pad with the best control characteristics. Different nozzle-pivot offsets can be set by varying the positioning of either the injection nozzle or the pivot line. The influence of the pivot compliance on the bearing dynamics is assessed by benchmarking the results obtained with the flexible pivot against the rigid pivot. Three different bearing loads are studied. According to the results, the proposed configurations, especially the offset-pivot pad with slight offsets, improve the bearing control characteristics by introducing an extra mechanism to access the system states. The loading condition modifies the stability, controllability, and observability, while the pivot flexibility highly affects the ALB dynamics.

References

1.
Santos
,
I. F.
,
1994
, “
Design and Evaluation of Two Types of Active Tilting Pad Journal Bearings
,”
The Active Control of Vibration
,
C. R.
Burrows
, and
P. S.
Keogh
, eds.,
Mechanical Engineering Publications Limited
,
London
, pp.
79
87
.
2.
Hagg
,
A. C.
,
1946
, “
The Influence of Oil-Film Journal Bearings on the Stability of Rotating Machines
,”
ASME J. Appl. Mech.
,
13
(
3
), pp.
A211
A220
.
3.
Santos
,
I. F.
,
1995
, “
On the Adjusting of the Dynamics Coefficients of Tilting-Pad Journal Bearing
,”
Trans. Tribol.
,
38
(
3
), pp.
700
706
.
4.
Santos
,
I. F.
, and
Russo
,
F.
,
1998
, “
Tilting-Pad Journal Bearing With Electronic Radial Oil Injection
,”
ASME J. Tribol.
,
120
(
3
), pp.
583
594
.
5.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Elastohydrodynamics Applied to Active Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
132
(
2
), p.
021702
.
6.
Cerda Varela
,
A.
,
Bjerregaard Nielsen
,
B.
, and
Santos
,
I. F.
,
2013
, “
Steady State Characteristics of a Tilting Pad Journal Bearing With Controllable Lubrication: Comparison Between Theoretical and Experimental Results
,”
Tribol. Int.
,
58
, pp.
85
97
.
7.
Cerda Varela
,
A.
, and
Santos
,
I. F.
,
2015
, “
Dynamic Coefficients of a Tilting Pad With Active Lubrication: Comparison Between Theoretical and Experimental Results
,”
ASME J. Tribol.
,
137
(
3
), p.
031704
.
8.
Santos
,
I. F.
, and
Scalabrin
,
A.
,
2003
, “
Control System Design for Active Lubrication With Theoretical and Experimental Examples
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
75
80
.
9.
Santos
,
I. F.
,
Nicoletti
,
R.
, and
Scalabrin
,
A.
,
2004
, “
Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
848
854
.
10.
Nicoletti
,
R.
, and
Santos
,
I.
,
2003
, “
Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings
,”
J. Sound Vib.
,
260
(
5
), pp.
927
947
.
11.
Nicoletti
,
R.
, and
Santos
,
I.
,
2005
, “
Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
638
645
.
12.
Nicoletti
,
R.
, and
Santos
,
I.
,
2008
, “
Control System Design for Flexible Rotors Supported by Actively Lubricated Bearings
,”
J. Vib. Control
,
14
(
3
), pp.
347
374
.
13.
Varela
,
A. C.
, and
Santos
,
I. F.
,
2014
, “
Tilting-Pad Journal Bearings With Active Lubrication Applied as Calibrated Shakers: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061010
.
14.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
1999
, “
THD Analysis in Tilting-Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication
,”
ASME J. Tribol.
,
121
(
4
), pp.
892
900
.
15.
Santos
,
I. F.
, and
Nicoletti
,
R.
,
2001
, “
Influence of Orifice Distribution on the Thermal and Static Properties of Hybridly Lubricated Bearings
,”
Int. J. Solids Struct.
,
38
(
10
), pp.
2069
2081
.
16.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-Orifice Active Tilting-Pad Journal Bearings-Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
.
17.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Stability of Multi Orifice Active Tilting-Pad Journal Bearings
,”
Tribol. Int.
,
43
(
9
), pp.
1742
1750
.
18.
Salazar
,
J. G.
, and
Santos
,
I. F.
,
2015
, “
Exploring Integral Controllers in Actively-Lubricated Tilting-Pad Journal Bearings
,”
Proc. IMechE Part J
,
229
(
7
), pp.
835
848
.
19.
Salazar
,
J. G.
, and
Santos
,
I. F.
,
2015
, “
Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors Supported by Tilting-Pad Journal Bearings
,”
Proc. IMechE Part J
,
229
(
10
), pp.
1264
1275
.
20.
Springer
,
H.
,
1980
,
Dynamic Characteristics of Sliding Bearings With Movable Segments
, Vol.
381
,
VDI-Berichte
, pp.
177
184
.
21.
Santos
,
I. F.
,
1996
, “
Theoretical and Experimental Identification of the Stiffness and Damping Coefficients of Active-Tilting Pad Journal Bearings
,”
Identification in Engineering Systems
,
M.
Friswell
, and
J.
Mottershead
, eds.,
The Cromwell Press Ltd.
,
Swansea, UK
, pp.
325
334
.
22.
Dmochowski
,
W.
,
2007
, “
Dynamic Properties of Tilting-Pad Journal Bearings: Experimental and Theoretical Investigation of Frequency Effects Due to Pivot Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
865
869
.
23.
Wilkes
,
J.
, and
Childs
,
D.
,
2012
, “
Tilting Pad Journal Bearings—A Discussion on Stability Calculation, Frequency Dependence and Pad and Pivot
,”
ASME J. Eng. Gas Turbines Power
,
134
, pp.
991
1006
.
24.
San Andres
,
L.
, and
Tao
,
Y.
,
2013
, “
The Role of Pivot Stiffness on the Dynamic Force Coefficients of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112505
.
25.
Wilkes
,
J. C.
, and
Childs
,
D. W.
,
2013
, “
Improving Tilting-Pad Journal Bearing Predictions Part II: Comparison of Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012503
.
26.
Schweitzer
,
G.
,
Maslen
,
E. H.
, and
Keogh
,
P.
,
2009
,
Magnetic Bearings
,
Springer
,
Berlin, Heidelberg
.
27.
Aguirre
,
L. A.
,
1995
, “
Controllability and Observability of Linear Systems: Some Noninvariant Aspects
,”
IEEE Trans. Educ.
,
38
(
1
), pp.
33
39
.
28.
Hendricks
,
E.
,
Jannerup
,
O. E.
, and
Sørensen
,
P. H.
,
2005
,
Linear Systems Control
,
Technical University of Denmark
,
Lyngby, Denmark
.
29.
Hamdan
,
A.
, and
Nayfeh
,
A.
,
1989
, “
Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems
,”
J. Guid. Control Dyn.
,
12
(
3
), pp.
421
428
.
30.
Park
,
U. S.
,
Choi
,
J. W.
,
Yoo
,
W.-S.
,
Lee
,
M. H.
,
Son
,
K.
,
Lee
,
J. M.
,
Lee
,
M. C.
, and
Han
,
S. H.
,
2003
, “
Optimal Placement of Sensors and Actuators Using Measures of Modal Controllability and Observability in a Balanced Coordinate
,”
KSME Int. J.
,
17
(
1
), pp.
11
22
.
31.
Laub
,
A. J.
,
Heath
,
M. T.
,
Paige
,
C. C.
, and
Ward
,
R. C.
,
1987
, “
Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms
,”
IEEE Trans. Autom. Control
,
32
(
2
), pp.
115
122
.
32.
Junkins
,
J. L.
, and
Kim
,
Y.
,
1991
, “
Measure of Controllability for Actuator Placement
,”
J. Guid., Control, Dyn.
,
14
(
5
), pp.
895
902
.
33.
ISO/IEC
,
2008
, “
Guide to the Expression of Uncertainty in Measurement (GUM:1995)
,” ISO, Geneva, Switzerland, ISO/IEC Guide No. 98-3, p.
120
.
You do not currently have access to this content.