The dynamic performance of 4-SPS/CU (spherical joint, prismatic joint, cylindrical joint, and universal joint) parallel mechanism considering spherical joint with clearance is developed, and the three-dimensional (3D) wear property of the socket is based on the Archard's wear model. First, the kinematics model of spherical joint with clearance is established, and the updated procedure pertaining to the contact mechanics and wear state is explained via a flowchart. An improved contact force model was proposed by Flores et al. contact force model through a revised contact stiffness coefficient. The normal and tangential contact forces between ball and socket are calculated using the improved contact force model and a modified Coulomb friction model. Second, the dynamic model of the parallel mechanism considering spherical joint with clearance is formulated based on the multibody equations of motion. In order to obtain the 3D wear property of spherical joint with clearance, the contact force is decomposed into three components in the global coordinate system. The three components of sliding distance are computed based on the 3D revolute property of the parallel mechanism. Finally, the contact pressures in three different directions are calculated by the corresponding contact force and approximate contact area components for the sake of predicting the 3D wear depth of socket based on the Archard's wear model. The simulation results show that the wear depth in different directions along the socket surface is nonuniform, which affects the performance of 4-SPS/CU parallel mechanism.

References

1.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Design and Dynamics of a 3DOF Flexure-Based Parallel Mechanism for Micro/Nano Manipulation
,”
Microelectron. Eng.
,
87
(
2
), pp.
230
241
.
2.
Yang
,
C.
,
Huang
,
Q.
,
Jiang
,
H.
,
Peter
,
O. O.
, and
Han
,
J.
,
2010
, “
PD Control With Gravity Compensation for Hydraulic 6-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
45
(
4
), pp.
666
677
.
3.
Zhang
,
J. Z.
,
Xie
,
X. P.
,
Li
,
C. J.
,
Xin
,
Y. Y.
, and
He
,
Z. M.
,
2013
, “
FEM Based Numerical Simulation of Delta Parallel Mechanism
,”
Adv. Mater. Res.
,
690
, pp.
2978
2981
.
4.
Ottoboni
,
A.
,
Parenti-Castelli
,
V.
,
Sancisi
,
N.
,
Belvedere
,
C.
, and
Leardini
,
A.
,
2010
, “
Articular Surface Approximation in Equivalent Spatial Parallel Mechanism Models of the Human Knee Joint: An Experiment-Based Assessment
,”
Proc. Inst. Mech. Eng. H.
,
224
(
9
), pp.
1121
1132
.
5.
Bu
,
W.
,
Liu
,
Z.
,
Tan
,
J.
, and
Gao
,
S.
,
2010
, “
Detachment Avoidance of Joint Elements of a Robotic Manipulator With Clearances Based on Trajectory Planning
,”
Mech. Mach. Theory
,
45
(
6
), pp.
925
940
.
6.
Wu
,
J. F.
,
Zhang
,
R.
,
Wang
,
R. H.
, and
Yao
,
Y. X.
,
2014
, “
A Systematic Optimization Approach for the Calibration of Parallel Kinematics Machine Tools by a Laser Tracker
,”
Int. J. Mach. Tool Manuf.
,
86
, pp.
1
11
.
7.
Tsai
,
M. S.
, and
Yuan
,
W. H.
,
2010
, “
Inverse Dynamics Analysis for a 3-PRS Parallel Mechanism Based on a Special Decomposition of the Reaction Forces
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1491
1508
.
8.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2014
, “
Stiffness Modeling for Perfect and Non-Perfect Parallel Manipulators Under Internal and External Loadings
,”
Mech. Mach. Theory
,
79
, pp.
1
28
.
9.
Dong
,
X.
,
Ye
,
J.
, and
Xiao-Feng
,
H.
,
2010
, “
Kinetic Uncertainty Analysis of the Reheat-Stop-Valve Mechanism With Multiple Factors
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1745
1765
.
10.
Parenti-Castelli
,
V.
, and
Venanzi
,
S.
,
2005
, “
Clearance Influence Analysis on Mechanisms
,”
Mech. Mach. Theory
,
40
(
12
), pp.
1316
1329
.
11.
Chebbi
,
A. H.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2009
, “
Prediction of the Pose Errors Produced by Joints Clearance for a 3-UPU Parallel Robot
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1768
1783
.
12.
Tannous
,
M.
,
Caro
,
S.
, and
Goldsztejn
,
A.
,
2014
, “
Sensitivity Analysis of Parallel Manipulators Using an Interval Linearization Method
,”
Mech. Mach. Theory
,
71
, pp.
93
114
.
13.
Chaker
,
A.
,
Mlika
,
A.
,
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2013
, “
Clearance and Manufacturing Errors' Effects on the Accuracy of the 3-RCC Spherical Parallel Manipulator
,”
Eur. J. Mech-A/Solids
,
37
, pp.
86
95
.
14.
Lee
,
S. J.
,
Gilmore
,
B. J.
, and
Ogot
,
M. M.
,
1993
, “
Dimensional Tolerance Allocation of Stochastic Dynamic Mechanical Systems Through Performance and Sensitivity Analysis
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
392
402
.
15.
Hassanzadeh
,
H. R.
,
Akbarzadeh-T
,
M. R.
,
Akbarzadeh
,
A.
, and
Rezaei
,
A.
,
2014
, “
An Interval-Valued Fuzzy Controller for Complex Dynamical Systems With Application to a 3-PSP Parallel Robot
,”
Fuzzy Set. Syst.
,
235
, pp.
83
100
.
16.
Wu
,
W.
, and
Rao
,
S. S.
,
2004
, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
581
592
.
17.
Frisoli
,
A.
,
Solazzi
,
M.
,
Pellegrinetti
,
D.
, and
Bergamasco
,
M.
,
2011
, “
A New Screw Theory Method for the Estimation of Position Accuracy in Spatial Parallel Manipulators With Revolute Joint Clearances
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1929
1949
.
18.
Shiau
,
T. N.
,
Tsai
,
Y. J.
, and
Tsai
,
M. S.
,
2008
, “
Nonlinear Dynamic Analysis of a Parallel Mechanism With Consideration of Joint Effects
,”
Mech. Mach. Theory
,
43
(
4
), pp.
491
505
.
19.
Zhang
,
X.
,
Zhang
,
X.
, and
Chen
,
Z.
,
2014
, “
Dynamic Analysis of a 3-RRR Parallel Mechanism With Multiple Clearance Joints
,”
Mech. Mach. Theory
,
78
, pp.
105
115
.
20.
Xu
,
L.
, and
Li
,
Y.
,
2014
, “
Investigation of Joint Clearance Effects on the Dynamic Performance of a Planar 2-DOF Pick-and-Place Parallel Manipulator
,”
Rob. Comput. Int. Manuf.
,
30
(
1
), pp.
62
73
.
21.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.
22.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
99
114
.
23.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Study of the Friction-Induced Vibration and Contact Mechanics of Artificial Hip Joints
,”
Tribol. Int.
,
70
, pp.
1
10
.
24.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
Dynamic Modeling and Analysis of Wear in Spatial Hard-on-Hard Couple Hip Replacements Using Multibody Systems Methodologies
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
1039
1058
.
25.
Costa
,
J.
,
Peixoto
,
J.
,
Moreira
,
P.
,
Souto
,
A. P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2016
, “
Influence of the Hip Joint Modeling Approaches on the Kinematics of Human Gait
,”
ASME J. Tribol.
,
138
(
3
), p.
031201
.
26.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13
), pp.
913
929
.
27.
Wang
,
G. X.
,
Liu
,
H. Z.
, and
Deng
,
P. S.
,
2015
, “
Dynamics Analysis of Spatial Multibody System With Spherical Joint Wear
,”
ASME J. Tribol.
,
137
(
2
), p.
021605
.
28.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2010
, “
Analysis of Planar Multibody Systems With Revolute Joint Wear
,”
Wear
,
268
(
5
), pp.
643
652
.
29.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T.
, and
Sawyer
,
W. G.
,
2010
, “
Comparison Between Elastic Foundation and Contact Force Models in Wear Analysis of Planar Multibody System
,”
ASME J. Tribol.
,
132
(
3
), pp.
1
11
.
30.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1211
1222
.
31.
Bai
,
Z. F.
,
Zhao
,
Y.
, and
Chen
,
J.
,
2013
, “
Dynamics Analysis of Planar Mechanical System Considering Revolute Clearance Joint Wear
,”
Tribol. Int.
,
64
, pp.
85
95
.
32.
Lopes
,
D. S.
,
Silva
,
M. T.
,
Ambrósio
,
J. A.
, and
Flores
,
P.
,
2010
, “
A Mathematical Framework for Rigid Contact Detection Between Quadric and Superquadric Surfaces
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
255
280
.
33.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
34.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
35.
Alves
,
J.
,
Peixinho
,
N.
,
da Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
36.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
37.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. P.
, and
Lankarani
,
H. M.
,
2006
, “
Influence of the Contact—Impact Force Model on the Dynamic Response of Multi-Body Systems
,”
Proc. Inst. Mech. Eng. K.
,
220
(
1
), pp.
21
34
.
38.
Ma
,
J.
,
Qian
,
L.
,
Chen
,
G.
, and
Li
,
M.
,
2015
, “
Dynamic Analysis of Mechanical Systems With Planar Revolute Joints With Clearance
,”
Mech. Mach. Theory
,
94
, pp.
148
164
.
39.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2013
, “
A Hybrid Contact Force Model of Revolute Joint With Clearance for Planar Mechanical Systems
,”
Int. J. Nonlinear Mech.
,
48
, pp.
15
36
.
40.
Ambrósio
,
J. A. C.
,
2002
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody System
,
2
, pp.
15
33
.
41.
Piatkowski
,
T.
,
2014
, “
GMS Friction Model Approximation
,”
Mech. Mach. Theory
,
75
, pp.
1
11
.
42.
Liu
,
L.
,
Liu
,
H.
,
Wu
,
Z.
, and
Yuan
,
D.
,
2009
, “
A New Method for the Determination of the Zero Velocity Region of the Karnopp Model Based on the Statistics Theory
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1696
1703
.
43.
Piatkowski
,
T.
,
2011
, “
Analysis of Translational Positioning of Unit Loads by Directionally-Oriented Friction Force Fields
,”
Mech. Mach. Theory
,
46
(
2
), pp.
201
217
.
44.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
da Silva
,
M. T.
,
2011
, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), pp.
1
10
.
45.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
46.
Janakiraman
,
V.
,
Li
,
S.
, and
Kahraman
,
A.
,
2014
, “
An Investigation of the Impacts of Contact Parameters on Wear Coefficient
,”
ASME J. Tribol.
,
136
(
3
), p.
031602
.
47.
Yang
,
L. J.
,
2005
, “
A Test Methodology for the Determination of Wear Coefficient
,”
Wear
,
259
(
7
), pp.
1453
1461
.
48.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2006
, “
Wear Simulation Using an Incremental Sliding Boundary Element Method
,”
Wear
,
260
(
9
), pp.
1119
1128
.
49.
Páczelt
,
I.
,
Kucharski
,
S.
, and
Mróz
,
Z.
,
2012
, “
The Experimental and Numerical Analysis of Quasi-Steady Wear Processes for a Sliding Spherical Indenter
,”
Wear
,
274
, pp.
127
148
.
50.
Põdra
,
P.
, and
Andersson
,
S.
,
1997
, “
Wear Simulation With the Winkler Surface Model
,”
Wear
,
207
(
1
), pp.
79
85
.
You do not currently have access to this content.