An effort was made to study and characterize the tribological characteristics of diamond nanoparticles as compared to neat mineral oil in the presence of sliding contact typically observed in the standard ASTM D4172 four-ball test. Four-ball tests were conducted with a solution of diamond nanoparticles and mineral oil, both at varying run times and bulk oil temperatures, and a consistent reduction in wear rates was observed. Numerical simulations were performed; it was observed that by enhancing the thermal conductivity of the lubricant, the wear reduction rate was observed to match the diamond nanoparticles solution results remarkably. This effort provides evidence that this additive wear reduction is in part caused by reduced lubricant temperatures due to the enhanced conductivity of the diamond.

References

1.
Tao
,
X.
,
Jiazheng
,
Z.
, and
Kang
,
X.
,
1996
, “
The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive
,”
J. Phys. D: Appl. Phys.
,
29
(
11
), pp.
2932
2937
.
2.
Wu
,
Y.
,
Tsui
,
W.
, and
Liu
,
T.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
3.
Mochalin
,
V.
,
Shenderova
,
O.
,
Ho
,
D.
, and
Gogotsi
,
Y.
,
2012
, “
The Properties and Applications of Nanodiamonds
,”
Nat. Nanotechnol.
,
7
, pp.
11
23
.
4.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosycevas
,
I.
, and
Kreivaitis
,
R.
,
2013
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Int.
,
60
, pp.
224
232
.
5.
Sunqing
,
Q.
,
Junxiu
,
D.
, and
Guoxu
,
C.
,
2000
, “
Wear and Friction Behaviour of CaCO3, Nanoparticles Used as Additives in Lubricating Oils
,”
Lubr. Sci.
,
12
(
2
), pp.
205
212
.
6.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
,
Popovitz-Biro
,
R.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2003
, “
Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication
,”
Wear
,
255
(
7–12
), pp.
785
793
.
7.
Einstein
,
A.
,
1906
, “
Neue Bestimmung der Molekuldimensionen
,”
Ann. Phys.
,
19
, pp.
289
306
.
8.
Pabst
,
W.
,
2004
, “
Fundamental Considerations on Suspension Rheology
,”
Ceram. Silik.
,
48
(
1
), pp.
6
13
.
9.
Marko
,
M.
,
Kyle
,
J.
,
Branson
,
B.
, and
Terrell
,
E.
,
2015
, “
Tribological Improvements of Dispersed Nano-Diamond Additives in Lubricating Mineral Oil
,”
ASME J. Tribol.
,
137
, p.
011802
.
10.
ASTM
,
2010
,
ASTM D4172-94, Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method)
,
ASTM International
,
West Conshohocken, PA
.
11.
Erdemir
,
A.
, and
Donnet
,
C.
,
2006
, “
Tribology of Diamond-Like Carbon Films: Recent Progress and Future Prospects
,”
J. Phys. D: Appl. Phys.
,
39
, pp.
311
327
.
12.
Gupta
,
B.
,
Malshe
,
A.
,
Bhushan
,
B.
, and
Subramaniam
,
V.
,
1994
, “
Friction and Wear Properties of Chemomechanically Polished Diamond Films
,”
ASME J. Tribol.
,
116
(
3
), pp.
445
453
.
13.
Volovik
,
Y.
, and
Tenne
,
R.
,
2002
, “
Friction and Wear of Powdered Composites Impregnated With WS2 Inorganic Fullerene-Like Nanoparticles
,”
Wear
,
252
, pp.
518
527
.
14.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lvovsky
,
M.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Feldman
,
Y.
,
Popovitz-Biro
,
R.
, and
Tenne
,
R.
,
2003
, “
Superior Tribological Properties of Powder Materials With Solid Lubricant Nanoparticles
,”
Wear
,
255
(
7–12
), pp.
794
800
.
15.
Rapoport
,
L.
,
Nepomnyashchy
,
O.
,
Lapsker
,
I.
,
Verdyan
,
A.
,
Moshkovich
,
A.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2005
, “
Behavior of Fullerene-Like WS2 Nanoparticles Under Severe Contact Conditions
,”
Wear
,
259
(
1–6
), pp.
703
707
.
16.
Rapoport
,
L.
,
Feldman
,
Y.
,
Homyonfer
,
M.
,
Cohen
,
H.
,
Sloan
,
J.
,
Hutchison
,
J.
, and
Tenne
,
R.
,
1999
, “
Inorganic Fullerene-Like Material as Additives to Lubricants: Structure–Function Relationship
,”
Wear
,
225–229
, pp.
975
982
.
17.
Grierson
,
D.
,
Sumant
,
A.
,
Konicek
,
A.
,
Friedmann
,
T.
,
Sullivan
,
J.
, and
Carpick
,
R.
,
2010
, “
Thermal Stability and Rehybridization of Carbon Bonding in Tetrahedral Amorphous Carbon
,”
J. Appl. Phys.
,
107
(
3
), p.
033523
.
18.
Konicek
,
A.
,
Grierson
,
D.
,
Gilbert
,
P.
,
Sawyer
,
W.
,
Sumant
,
A.
, and
Carpick
,
R.
,
2008
, “
Origin of Ultralow Friction and Wear in Ultrananocrystalline Diamond
,”
Phys. Rev. Lett.
,
100
(
23
), p.
235502
.
19.
Siegbahn
,
K.
, and
Edvarson
,
K.
,
1956
, “
β-Ray Spectroscopy in the Precision Range of 1:105
,”
Nucl. Phys.
,
1
(
3
), pp.
137
159
.
20.
Branson
,
B.
,
Seif
,
M.
,
Davidson
,
J.
, and
Lukehart
,
C.
,
2011
, “
Fabrication and Macro/Nanoscale Characterization of Aggregated and Highly De-Aggregated Nanodiamond/Polyacrylonitrile Composite Thick Films
,”
J. Mater. Chem.
,
21
(
46
), pp.
18832
18839
.
21.
Marko
,
M.
,
2011
, “
The Tribological Effects of Lubricating Oil Containing Nanometer-Scale Diamond Particles
,” Ph.D. thesis, Columbia University, New York.
22.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London A
,
295
(
1442
), pp.
300
319
.
23.
Hu
,
Y.
,
Li
,
N.
, and
Tønder
,
K.
,
1991
, “
A Dynamic System Model for Lubricated Sliding Wear and Running-In
,”
ASME J. Tribol.
,
113
(
3
), pp.
499
505
.
24.
Finkin
,
E.
,
1970
, “
Applicability of Greenwood–Williamson Theory to Film Covered Surfaces
,”
Wear
,
15
(
4
), pp.
291
293
.
25.
Endo
,
K.
, and
Kotani
,
S.
,
1973
, “
Observations of Steel Surfaces Under Lubricated Wear
,”
Wear
,
26
(
2
), pp.
239
251
.
26.
Golden
,
J.
,
1976
, “
The Evolution of Asperity Height Distributions of a Surface Seemed to Wear
,”
Wear
,
39
(
1
), pp.
25
44
.
27.
Jahanmir
,
S.
, and
Suh
,
N.
,
1977
, “
Surface Topography and Integrity Effects on Sliding Wear
,”
Wear
,
44
(
1
), pp.
87
99
.
28.
Shafia
,
M.
, and
Eyre
,
T.
,
1980
, “
The Effect of Surface Topography on the Wear of Steel
,”
Wear
,
61
(
1
), pp.
87
100
.
29.
Johnson
,
K.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
30.
Blau
,
P.
,
2005
, “
On the Nature of Running-In
,”
Tribol. Int.
,
38
(
11–12
), pp.
1007
1012
.
31.
Suzuki
,
M.
, and
Ludema
,
K.
,
1987
, “
The Wear Process During The ‘Running-In’ of Steel in Lubricated Sliding
,”
ASME J. Tribol.
,
109
(
4
), pp.
587
591
.
32.
Klapperich
,
C.
,
Komvopoulos
,
K.
, and
Pruitt
,
L.
,
1999
, “
Tribological Properties and Microstructure Evolution of Ultra-High Molecular Weight Polyethylene
,”
Trans. ASME
,
121
(
2
), pp.
394
402
.
33.
Spanu
,
C.
,
Ripa
,
M.
, and
Ciortan
,
S.
,
2008
, “
Study of Wear Evolution for a Hydraulic Oil Using a Four-Ball Tester
,”
Ann. Univ. “Dunarea Jos” Galati
,
8
, pp.
186
189
.
34.
Bayer
,
R.
, and
Sirico
,
J.
,
1975
, “
The Influence of Surface Roughness on Wear
,”
Wear
,
35
(
2
), pp.
251
260
.
35.
Sharif
,
K.
,
Evans
,
H.
,
Snidle
,
R.
,
Barnett
,
D.
, and
Egorov
,
I.
,
2006
, “
Effect of Elastohydrodynamic Film Thickness on a Wear Model for Worm Gears
,”
J. Eng. Tribol.
,
220
, pp.
295
306
.
36.
Smeeth
,
M.
, and
Spikes
,
H. A.
,
1997
, “
Central and Minimum Elastohydrodynamic Film Thickness at High Contact Pressure
,”
ASME J. Tribol.
,
119
(
2
), pp.
291
296
.
37.
Hamrock
,
B.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, III Fully Flooded Results
,” NASA Technical Note No. D-8317.
38.
Stachowiak
,
G.
, and
Batchelor
,
A.
,
2005
,
Engineering Tribology
, 4th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
39.
So
,
B.
, and
Klaus
,
E.
,
1980
, “
Viscosity–Pressure Correlation of Liquids
,”
ASLE Trans.
,
23
(
4
), pp.
409
421
.
40.
ASTM
,
2009
,
ASTM D341-09, Standard Practice for Viscosity-Temperature Charts for Liquid Petroleum Products
,
ASTM International
,
West Conshohocken, PA
.
41.
Gohar
,
R.
,
2002
,
Elastohydrodynamics
,
World Scientific Publishing Company
,
Singapore
.
42.
Archard
,
J.
,
1958
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
, pp.
438
455
.
43.
Blok
,
H.
,
1937
, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Conditions
,”
Proc. Inst. Mech. Eng.
,
2
, pp.
222
235
.
44.
Jaeger
,
J.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contact
,”
Proc. R. Soc. N.S.W.
,
76
, pp.
203
224
.
45.
Cengel
,
Y.
,
2002
,
Heat Transfer, a Practical Approach
, 2nd ed.,
McGraw-Hill
,
New York
.
46.
Elcoate
,
C.
,
Evans
,
H.
,
Hughes
,
T.
, and
Snidle
,
R.
,
2001
, “
Transient Elastohydrodynamic Analysis of Rough Surfaces Using a Novel Coupled Differential Deflection Method
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
4
), pp.
319
337
.
47.
Jamali
,
H.
,
Sharif
,
K.
,
Evans
,
H.
, and
Snidle
,
R.
,
2015
, “
The Transient Effects of Profile Modification on Elastohydrodynamic Oil Films in Helical Gears
,”
Tribol. Trans.
,
58
(
1
), pp.
119
130
.
48.
Evans
,
H.
,
Clarke
,
A.
,
Sharif
,
K.
, and
Snidle
,
R.
,
2010
, “
The Role of Heat Partition in Elastohydrodynamic Lubrication
,”
Tribol. Trans.
,
53
(
2
), pp.
179
188
.
49.
Sharif
,
K.
,
Evans
,
H.
, and
Snidle
,
R.
,
2012
, “
Modelling of Elastohydrodynamic Lubrication and Fatigue of Rough Surfaces: The Effect of Lambda Ratio
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
12
), pp.
1039
1050
.
50.
Hamrock
,
B.
, and
Dowson
,
D.
,
1975
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, I Theoretical Formulation
,” NASA Technical Note No. D-8049.
51.
Hamrock
,
B.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, IV Starvation Results
,” NASA Technical Note No. D-8318.
52.
Cameron
,
A.
, and
Gohar
,
R.
,
1966
, “
Theoretical and Experimental Studies of the Oil Film in Lubricated Point Contact
,”
Proc. R. Soc. London Ser. A
,
291
(
1427
), pp.
520
536
.
53.
Dowson
,
D.
,
1995
, “
Elastohydrodynamic and Micro-Elastohydrodynamic Lubrication
,”
Wear
,
190
(
2
), pp.
125
138
.
54.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
55.
Jiang
,
P.
,
Li
,
X.
,
Guo
,
F.
, and
Chen
,
J.
,
2009
, “
Interferometry Measurement of Spin Effect on Sliding EHL
,”
Tribol. Lett.
,
33
(
3
), pp.
161
168
.
56.
Goodyer
,
C.
, and
Berzins
,
M.
,
2006
, “
Adaptive Timestepping for Elastohydrodynamic Lubrication Solvers
,”
SIAM J. Sci. Comput.
,
28
(
2
), pp.
626
650
.
57.
Ranger
,
A.
,
Ettles
,
C.
, and
Cameron
,
A.
,
1975
, “
The Solution of the Point Contact Elasto-Hydrodynamic Problem
,”
Proc. R. Soc. London, Ser. A
,
346
(
1645
), pp.
227
244
.
58.
Graebner
,
J.
,
Hartnett
,
T.
, and
Miller
,
R.
,
1994
, “
Improved Thermal Conductivity in Isotopically Enriched Chemical Vapor Deposited Diamond
,”
Appl. Phys. Lett.
,
64
(
19
), pp.
2549
2551
.
59.
Anthony
,
T.
,
Fleischer
,
J.
,
Olson
,
J.
, and
Cahill
,
D.
,
1991
, “
The Thermal Conductivity of Isotopically Enriched Polycrystalline Diamond Films
,”
J. Appl. Phys.
,
69
(
12
), pp.
8122
8125
.
60.
Wei
,
L.
,
Kuo
,
P.
,
Thomas
,
R.
,
Anthony
,
T.
, and
Banholzer
,
W.
,
1993
, “
Thermal Conductivity of Isotopically Modified Single Crystal Diamond
,”
Phys. Rev. Lett.
,
70
(
24
), pp.
3764
3767
.
61.
Anthony
,
T.
,
Banholzer
,
W.
,
Fleischer
,
J.
,
Wei
,
L.
,
Kuo
,
P.
,
Thomas
,
R.
, and
Pryor
,
R.
,
1990
, “
Thermal Diffusivity of Isotopically Enriched 12C Diamond
,”
Phys. Rev. B
,
42
(
2
), pp.
1104
1111
.
62.
Zhang
,
Z.
, and
Fang
,
X.
,
2006
, “
Study on Paraffin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material
,”
Energy Conv. Manage.
,
47
(
3
), pp.
303
310
.
63.
Karaipekli
,
A.
,
Sari
,
A.
, and
Kaygusuzb
,
K.
,
2007
, “
Thermal Conductivity Improvement of Stearic Acid Using Expanded Graphite and Carbon Fiber for Energy Storage Applications
,”
Renewable Energy
,
32
(
13
), pp.
2201
2210
.
64.
Sari
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
, pp.
1271
1277
.
65.
Rowley
,
R
,
1982
, “
A Local Composition Model for Multicomponent Liquid Mixture Thermal Conductivities
,”
Chem. Eng. Sci.
,
37
(
6
), pp.
897
904
.
66.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U.
,
1999
, “
Thermal Conductivity of Nanoparticle–Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.
67.
Maxwell
,
J.
,
1904
,
Electricity and Magnetism, Part II
, 3rd ed.,
Clarendon
,
Oxford, UK
.
68.
Branson
,
B. T.
,
Beauchamp
,
P. S.
,
Beam
,
J. C.
,
Lukehart
,
C. M.
, and
Davidson
,
J. L.
,
2013
, “
Nanodiamond Nanofluids for Enhanced Thermal Conductivity
,”
Am. Chem. Soc. Nano
,
7
(
4
), pp.
3183
3189
.
69.
Taha-Tijerina
,
J. J.
,
Narayanan
,
T.
,
Tiwary
,
C. S.
,
Lozano
,
K.
,
Chipara
,
M.
, and
Ajayan
,
P. M.
,
2014
, “
Nanodiamond-Based Thermal Fluids
,”
Am. Chem. Soc. Appl. Mater. Interfaces
,
6
(
7
), pp.
4778
4785
.
70.
Keblinski
,
P.
,
Phillpot
,
S.
,
Choi
,
S.
, and
Eastman
,
J.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
71.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.
72.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.
73.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
74.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
75.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
76.
Shima
,
P. D.
,
Philip
,
J.
, and
Raj
,
B.
,
2010
, “
Synthesis of Aqueous and Nonaqueous Iron Oxide Nanofluids and Study of Temperature Dependence on Thermal Conductivity and Viscosity
,”
J. Phys. Chem. C
,
114
(
44
), pp.
18825
18833
.
77.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
,
6
(
3
), pp.
419
423
.
78.
Osswald
,
S.
,
Yushin
,
G.
,
Mochalin
,
V.
,
Kucheyev
,
S.
, and
Gogotsi
,
Y.
,
2006
, “
Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air
,”
J. Am. Chem. Soc.
,
128
(
35
), pp.
11635
11642
.
You do not currently have access to this content.