Particulate aluminum matrix composites (PAMCs) with different volume percent of Al3Zr particles have been developed by direct melt reaction (DMR). Wear and friction have been studied in detail for all compositions under dry sliding conditions. Results indicate that the wear rate, normalized wear rate, and wear coefficient of PAMCs decrease continuously with increase in volume percent of Al3Zr particles, however, with applied load and sliding distance, wear continuously increases. Wear rate and wear coefficient with sliding velocity initially decrease for all compositions, attains minima, and then increase sharply. However, coefficient of friction shows increasing trend with composition and sliding velocity but with load it shows a decreasing trend and with distance slid it fluctuates within a value of ±0.025. At low load and sliding velocity three-dimensional (3D)-profilometer, scanning electron microscope (SEM), and debris studies show low Ra values and mild wear dominated by oxidative nature, whereas at high loads and sliding velocities high Ra values and wear nature change to severe wear with mixed mode (oxidative–metallic) and surface with deep grooves is observed. Further, it is also important to note from morphological studies that refinement of matrix phase takes place with in situ formation of Al3Zr particles, which helps to improve hardness and tensile properties finally contributing to low wear rate.

References

1.
Mohan
,
S.
,
Prakash
,
V.
, and
Pathak
,
J. P.
,
2002
, “
Wear Characteristics of HSLA Steel
,”
Wear
,
252
(
1–2
), pp.
16
25
.
2.
Surappa
,
M. K.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1
), pp.
319
334
.
3.
Agarwal
,
R.
,
Mohan
,
A.
,
Mohan
,
S.
, and
Gautam
,
R. K.
,
2014
, “
Synthesis and Characterization of Al/Al3Fe Nanocomposite for Tribological Applications
,”
ASME J. Tribol.
,
136
(
1
), p.
012001
.
4.
Mohan
,
S.
, and
Srivastava
,
S.
,
2006
, “
Surface Behaviour of As-Cast Al–Fe Intermetallic Composites
,”
Tribol. Lett.
,
22
(
1
), pp.
45
51
.
5.
Varin
,
R. A.
,
2002
, “
Intermetallic-Reinforced Light-Metal Matrix In-Situ Composites
,”
Metall. Mater. Trans., A
,
33
(
1
), pp.
193
201
.
6.
Matsumuro
,
M.
, and
Kitsudo
,
T.
,
2006
, “
Fabrication of In-Situ Intermetallic Compound Dispersed Aluminium Matrix Composites by Addition of Metal Powders
,”
Mater. Trans.
,
47
(
12
), pp.
2972
2979
.
7.
Wang
,
X.
,
Jha
,
A.
, and
Brydson
,
R.
,
2004
, “
In Situ Fabrication of Al3Ti Particle Reinforced Aluminium Alloy Metal–Matrix Composites
,”
Mater. Sci. Eng., A
,
364
(
1–2
), pp.
339
345
.
8.
Ferreira
,
S. C.
,
Sequeira
,
P. D.
,
Watanabe
,
Y.
,
Arizaa
,
E.
, and
Rocha
,
L. A.
,
2011
, “
Microstructural Characterization and Tribocorrosion Behaviour of Al/Al3Ti and Al/Al3Zr FGMs
,”
Wear
,
270
(
11–12
), pp.
806
814
.
9.
Li
,
L.
,
Zhang
,
Y.
,
Esling
,
C.
,
Jiang
,
H.
,
Zhao
,
Z.
,
Zuo
,
Y.
, and
J.
Cui
,
2011
, “
Crystallographic Features of the Primary Al3Zr Phase in As-Cast Al-1.36 wt% Zr Alloy
,”
J. Cryst. Growth
,
316
(
1
), pp.
172
176
.
10.
Zedalis
,
M. S.
,
Ghate
,
M. V.
, and
Fine
,
M. E.
,
1985
, “
Elastic Moduli of Al3Zr
,”
Scr. Metall.
,
19
(
5
), pp.
647
650
.
11.
Miao
,
W.
,
Tao
,
K.
,
Li
,
B.
, and
Liu
,
B. X.
,
2000
, “
Formation of DO23-Al3Zr by Zr Ion Implantation Using a Metal Vapour Vacuum Arc Ion Source
,”
J. Phys. D: Appl. Phys.
,
33
, pp.
2300
2303
.
12.
Saklakoglu
,
N.
,
Saklakoglu
, I
. E.
,
Tanoglu
,
M.
,
Oztas
,
O.
, and
Cubukcuoglu
,
O.
,
2004
, “
Mechanical Properties and Microstructural Evaluation of AA5013 Aluminium Alloy Treated in the Semi-Solid State by SIMA Process
,”
J. Mater. Process. Technol.
,
148
(
1
), pp.
103
107
.
13.
Dinaharan
,
I.
,
Kumar
,
G. A.
,
Vijay
,
S. J.
, and
Murugan
,
N.
,
2014
, “
Development of Al3Ti and Al3Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In Situ Composites Using Friction Stir Processing
,”
Mater. Des.
,
63
, pp.
213
222
.
14.
Mandal
,
D.
,
Dutta
,
B. K.
, and
Panigrahi
,
S. C.
,
2008
, “
Microstructure and Mechanical Properties of Al–2Mg Base Short Steel Fiber Composites
,”
J. Mater. Process. Technol.
,
198
(1–3), pp.
195
201
.
15.
Mandal
,
D.
,
Dutta
,
B. K.
, and
Panigrahi
,
S. C.
,
2006
, “
Microstructure and Mechanical Properties of Al–2Mg Alloy Base Short Steel Fiber Reinforced Composites Prepared by Vortex Method
,”
J. Mater. Sci.
,
41
(
15
), pp.
4764
4770
.
16.
Lee
,
K. B.
,
Sim
,
H. S.
,
Cho
,
S. Y.
, and
Kwon
,
H.
,
2001
, “
Tensile Properties of 5052 Al Matrix Composites Reinforced With B4C Particles
,”
Metall. Mater. Trans., A
,
32
(8), pp.
2142
2147
.
17.
Dolatkhah
,
A.
,
Golbabaei
,
P.
,
Besharatigivi
,
M. K.
, and
Molaiekiya
,
F.
,
2012
, “
Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated Via Friction Stir Processing
,”
Mater. Des.
,
37
, pp.
458
464
.
18.
Zulfia
,
A.
, and
Hand
,
R. J.
,
2002
, “
The Production of Al-Mg Alloy/SiC Metal Matrix Composites by Pressureless Infiltration
,”
J. Mater. Sci.
,
37
(
5
), pp.
955
961
.
19.
Li
,
G. R.
,
Zhao
,
Y. T.
,
Wang
,
H. M.
,
Chen
,
G.
,
Dai
,
Q. X.
, and
Cheng
,
X. N.
,
2009
, “
Fabrication and Properties of In Situ (Al3Zr+Al2O3)p/A356 Composites Cast by Permanent Mould and Squeeze Casting
,”
J. Alloys Compd.
,
471
(
1–2
), pp.
530
535
.
20.
Henry
,
S. D.
,
1992
,
Friction, Lubrication and Wear Technology
(ASM Handbook), Vol.
18
, ASM Internation, Novelty, OH, p.
478
.
21.
Kumar
,
G. A.
,
Dinaharan
,
I.
,
Vijay
,
S. J.
, and
Murugan
,
N.
,
2013
, “
Friction Stir Processing of Intermetallic Particulate Reinforced Aluminium Matrix Composite
,”
Adv. Mater. Lett.
,
4
(
3
), pp.
230
234
.
22.
Ebrahimi
,
S. H. S.
,
Emamy
,
M.
,
Pourkia
,
N.
, and
Lashgari
,
H. R.
,
2010
, “
The Microstructure, Hardness and Tensile Properties of a New Super High Strength Aluminium Alloy With Zr Addition
,”
Mater. Des.
,
31
(
9
), pp.
4450
4456
.
23.
Li
,
G. R.
,
Zhao
,
Y. T.
,
Dai
,
Q. X.
,
Cheng
,
X. N.
,
Wang
,
H. M.
, and
Chen
,
G.
,
2007
, “
Fabrication and Properties of In Situ Synthesized Particles Reinforced Aluminium Matrix Composites of Al–Zr–O–B System
,”
J. Mater. Sci.
,
42
(
14
), pp.
5442
5447
.
24.
Kaveendran
,
B.
,
Wang
,
G. S.
,
Huag
,
L. J.
,
Geng
,
L.
,
Luo
,
Y.
, and
Peng
,
H. X.
,
2013
, “
In Situ (Al3Zrp+Al2O3np)/2024Al Metal Matrix Composite With Controlled Reinforcement Architecture Fabricated by Reaction Hot Pressing
,”
Mater. Sci. Eng., A
,
583
, pp.
89
95
.
25.
Zhao
,
Y. T.
,
Cheng
,
X. N.
,
Dai
,
Q. X.
,
Cai
,
L.
, and
Sun
,
G. X.
,
2003
, “
Crystal Morphology and Growth Mechanism of Reinforcements Synthesized by Direct Melt Reaction in the System Al-Zr-O
,”
Mater. Sci. Eng., A
,
360
(1–2), pp.
315
318
.
26.
Ramesh
,
C. S.
,
Ahamed
,
A.
,
Channabasappa
,
B. H.
, and
Keshavamurthy
,
R.
,
2010
, “
Development of Al 6063–TiB2 In Situ Composites
,”
Mater. Des.
,
31
(4), pp.
2230
2236
.
27.
Tian
,
K.
,
Zhao
,
Y.
,
Jiao
,
L.
,
Zhang
,
S.
,
Zhang
,
Z.
, and
Wu
,
X.
,
2014
, “
Effects of In Situ Generated ZrB2 Nano-Particles on Microstructure and Tensile Properties of 2024Al Matrix Composites
,”
J. Alloys Compd.
,
594
, pp.
1
6
.
28.
Kumar
,
N.
,
Gautam
,
R. K.
, and
Mohan
,
S.
,
2015
, “
In-Situ Development of ZrB2 Particles and Their Effect on Microstructure and Mechanical Properties of AA5052 Metal-Matrix Composites
,”
Mater. Des.
,
80
, pp.
129
136
.
29.
Gautam
,
G.
, and
Mohan
,
A.
,
2015
, “
Effect of ZrB2 Particles on the Microstructure and Mechanical Properties of Hybrid (ZrB2 + Al3Zr)/AA5052 In Situ Composites
,”
J. Alloys Compd.
,
649
, pp.
174
183
.
30.
Srivastava
,
S.
, and
Mohan
,
S.
,
2011
, “
Study of Wear and Friction of Al-Fe Metal Matrix Composite Produced by Liquid Metallurgical Method
,”
Tribol. Ind.
,
33
, pp.
128
137
,
31.
Kumar
,
N.
,
Gautam
,
R. K.
, and
Mohan
,
S.
,
2015
, “
Wear and Friction Behavior of In-Situ AA5052/ZrB2 Composites Under Dry Sliding Conditions
,”
Tribol. Ind.
,
37
, pp.
244
256
,
32.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
, pp.
981
988
.
You do not currently have access to this content.