This technical brief presents a new self-compensation hydrostatic spherical hinge to provide a large load capacity. The hinge consists of an upper part with self-compensation and a lower part with orifice restrictors. A comparative study of the static behavior is conducted between the self-compensation hydrostatic spherical hinge and the hydrostatic spherical hinge with orifice restrictors, the result shows that the self-compensation hydrostatic spherical hinge has an advantage in the static behavior over the hydrostatic spherical hinge with orifice restrictors, including a much larger load capacity, a smaller flow rate, and a smaller power loss.
Issue Section:
Technical Brief
Keywords:
Hydrostatic lubrication
References
1.
Xu
, C.
, and Jiang
, S.
, 2015
, “Analysis of Static and Dynamic Characteristic of Hydrostatic Spherical Hinge
,” ASME J. Tribol.
, 137
(2
), p. 021701
.10.1115/1.40289102.
Wasson
, K. L.
, and Slocum
, A. H.
, 1997
, “Integrated Shaft-Self Compensating Hydrostatic Bearing—Has Cylindrical Bore Provided Having Circumferential Grooves Connected to Pressure Supply and Drain Systems
,” Patent Nos. WO9708470-A; EP845082-A; TW304221-Y; WO9708470-A1; AU9666662-A; TW304221-A; US5700092-A; EP845082-A1; JP11511540-W.3.
Slocum
, A. H.
, 1996
, “Low Profile Self-Compensated Hydrostatic Thrust Bearing—Has Self-Compensating Beating Mounted Circumferentially About Shaft Having Fluid Pressure Supply Groove Providing Fluid Communication
,” U.S. Patent No. US5533814-A.4.
O'Donoghue
, J. P.
, and Lewis
, G. K.
, 1970
, “Single Recess Spherical Hydrostatic Bearings
,” ASME J. Tribol
, 3
(4
), pp. 232
–234
.10.1016/0041-2678(70)90063-15.
Laub
, J. H.
, and Norton
, R. H.
, 1961
, “Externally Pressurized Spherical Gas Bearings
,” ASLE Trans.
, 4
(1
), pp. 172
–180
.10.1080/056981961089724296.
Rowe
, W. B.
, and Stout
, K. J.
, 1971
, “Design Data and a Manufacturing Technique for Spherical Hydrostatic Bearings in Machine Tool Applications
,” Int. J. Mach. Tool Des. Res.
, 11
(4
), pp. 293
–307
.10.1016/0020-7357(71)90012-67.
Singh
, N.
, Sharma
, S. C.
, Jain
, S. C.
, and Reddy
, S. S.
, 2004
, “Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes
,” Tribol. Int.
, 37
(1
), pp. 11
–24
.10.1016/S0301-679X(03)00110-58.
Morsi
, S. A.
, 1972
, “Passively and Actively Controlled Externally Pressurized Oil-Film Bearings
,” ASME J. Tribol.
, 94
(1
), pp. 56
–63
.9.
Wb
, R.
, 1983
, Hydrostatic and Hybrid Bearing Design
, Butterworths
, London
.10.
Lo
, C. Y.
, Wang
, C. C.
, and Lee
, Y. H.
, 2005
, “Performance Analysis of High-Speed Spindle Aerostatic Bearings
,” Tribol. Int.
, 38
(1
), pp. 5
–14
.10.1016/j.triboint.2004.04.00811.
Roy
, L.
, and Laha
, S. K.
, 2009
, “Steady State and Dynamic Characteristics of Axial Grooved Journal Bearings
,” Tribol. Int.
, 42
(5
), pp. 754
–761
.10.1016/j.triboint.2008.10.01012.
Ghosh
, B.
, 1973
, “Load and Flow Characteristics of a Capillary Compensated Hydrostatic Journal-Bearing
,” Wear
, 23
(3
), pp. 377
–386
.10.1016/0043-1648(73)90024-013.
Nicoletti
, R.
, 2013
, “Comparison Between a Meshless Method and the Finite Difference Method for Solving the Reynolds Equation in Finite Bearings
,” ASME J. Tribol.
, 135
(4
), p. 044501
.10.1115/1.402475214.
Zuo
, X.
, Wang
, J.
, Yin
, Z.
, and Li
, S.
, 2013
, “Performance Analysis of Multirecess Angled-Surface Slot-Compensated Conical Hydrostatic Bearing
,” ASME J. Tribol.
, 135
(4
), p. 041701
.10.1115/1.402429615.
Zuo
, X.
, Wang
, J.
, Yin
, Z.
, and Li
, S.
, 2013
, “Comparative Performance Analysis of Conical Hydrostatic Bearings Compensated by Variable Slot and Fixed Slot
,” Tribol. Int.
, 66
, pp. 83
–92
.10.1016/j.triboint.2013.04.01316.
Sharma
, S. C.
, Kumar
, V.
, Jain
, S. C.
, Sinhasan
, R.
, and Subramanian
, M.
, 1999
, “A Study of Slot-Entry Hydrostatic/Hybrid Journal Bearing Using the Finite Element Method
,” Tribol. Int.
, 32
(4
), pp. 185
–196
.10.1016/S0301-679X(99)00032-817.
Liang
, P.
, Lu
, C.
, Pan
, W.
, and Li
, S.
, 2014
, “A New Method for Calculating the Static Performance of Hydrostatic Journal Bearing
,” Tribol. Int.
, 77
(4
), pp. 72
–77
.10.1016/j.triboint.2014.04.01918.
Shenoy
, B. S.
, and Pai
, R.
, 2009
, “Steady State Performance Characteristics of Single Pad Externally Adjustable Fluid Film Bearing in the Laminar and Turbulent Regimes
,” ASME J. Tribol.
, 131
(2
), p. 021701
.10.1115/1.307058019.
Taylor
, C. M.
, and Dowson
, D.
, 1974
, “Turbulent Lubrication Theory—Application to Design
,” ASME J. Tribol.
, 96
(1
), pp. 36
–46
.10.1115/1.345190520.
Brunetière
, N.
, 2005
, “A Modified Turbulence Model for Low Reynolds Numbers: Application to Hydrostatic Seals
,” ASME J. Tribol.
, 127
(1
), pp. 130
–140
.10.1115/1.182972121.
Helene
, M.
, Arghir
, M.
, and Frene
, J.
, 2003
, “Numerical Study of the Pressure Pattern in a Two-Dimensional Hybrid Journal Bearing Recess, Laminar, and Turbulent Flow Results
,” ASME J. Tribol.
, 125
(2
), pp. 283
–290
.10.1115/1.153723322.
Papadopoulos
, C. I.
, Kaiktsis
, L.
, and Fillon
, M.
, 2013
, “Computational Fluid Dynamics Thermohydrodynamic Analysis of Three-Dimensional Sector-Pad Thrust Bearings With Rectangular Dimples
,” ASME J. Tribol.
, 136
(1
), p. 011702
.10.1115/1.402524523.
Wodtke
, M.
, Fillon
, M.
, Schubert
, A.
, and Wasilczuk
, M.
, 2012
, “Study of the Influence of Heat Convection Coefficient on Predicted Performance of a Large Tilting-Pad Thrust Bearing
,” ASME J. Tribol.
, 135
(2
), p. 021702
.10.1115/1.402308624.
Lin
, Q.
, Wei
, Z.
, Wang
, N.
, and Chen
, W.
, 2013
, “Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid–Structure Interaction Considering Thermal Influence and Cavitation
,” Tribol. Int.
, 64
, pp. 8
–15
.10.1016/j.triboint.2013.03.00125.
Dousti
, S.
, Cao
, J.
, Younan
, A.
, Allaire
, P.
, and Dimond
, T.
, 2012
, “Temporal and Convective Inertia Effects in Plain Journal Bearings With Eccentricity, Velocity and Acceleration
,” ASME J. Tribol.
, 134
(3
), p. 031704
.10.1115/1.400692826.
Syed
, I.
, and Sarangi
, M.
, 2014
, “Hydrodynamic Lubrication With Deterministic Micro Textures Considering Fluid Inertia Effect
,” Tribol. Int.
, 69
, pp. 30
–38
.10.1016/j.triboint.2013.08.01127.
Lin
, J.
, 2013
, “Inertia Force Effects in the Non-Newtonian Couple Stress Squeeze Film Between a Sphere and a Flat Plate
,” Tribol. Int.
, 67
, pp. 81
–89
.10.1016/j.triboint.2013.07.00328.
Brunetière
, N.
, and Tournerie
, B.
, 2007
, “Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films
,” ASME J. Tribol.
, 129
(4
), pp. 876
–886
.10.1115/1.276808929.
Yacout
, A. W.
, Ismaeel
, A. S.
, and Kassab
, S. Z.
, 2007
, “The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance
,” Tribol. Int.
, 40
(3
), pp. 522
–532
.10.1016/j.triboint.2006.05.007Copyright © 2015 by ASME
You do not currently have access to this content.