This technical brief presents a new self-compensation hydrostatic spherical hinge to provide a large load capacity. The hinge consists of an upper part with self-compensation and a lower part with orifice restrictors. A comparative study of the static behavior is conducted between the self-compensation hydrostatic spherical hinge and the hydrostatic spherical hinge with orifice restrictors, the result shows that the self-compensation hydrostatic spherical hinge has an advantage in the static behavior over the hydrostatic spherical hinge with orifice restrictors, including a much larger load capacity, a smaller flow rate, and a smaller power loss.

References

1.
Xu
,
C.
, and
Jiang
,
S.
,
2015
, “
Analysis of Static and Dynamic Characteristic of Hydrostatic Spherical Hinge
,”
ASME J. Tribol.
,
137
(
2
), p.
021701
.10.1115/1.4028910
2.
Wasson
,
K. L.
, and
Slocum
,
A. H.
,
1997
, “
Integrated Shaft-Self Compensating Hydrostatic Bearing—Has Cylindrical Bore Provided Having Circumferential Grooves Connected to Pressure Supply and Drain Systems
,” Patent Nos. WO9708470-A; EP845082-A; TW304221-Y; WO9708470-A1; AU9666662-A; TW304221-A; US5700092-A; EP845082-A1; JP11511540-W.
3.
Slocum
,
A. H.
,
1996
, “
Low Profile Self-Compensated Hydrostatic Thrust Bearing—Has Self-Compensating Beating Mounted Circumferentially About Shaft Having Fluid Pressure Supply Groove Providing Fluid Communication
,” U.S. Patent No. US5533814-A.
4.
O'Donoghue
,
J. P.
, and
Lewis
,
G. K.
,
1970
, “
Single Recess Spherical Hydrostatic Bearings
,”
ASME J. Tribol
,
3
(
4
), pp.
232
234
.10.1016/0041-2678(70)90063-1
5.
Laub
,
J. H.
, and
Norton
,
R. H.
,
1961
, “
Externally Pressurized Spherical Gas Bearings
,”
ASLE Trans.
,
4
(
1
), pp.
172
180
.10.1080/05698196108972429
6.
Rowe
,
W. B.
, and
Stout
,
K. J.
,
1971
, “
Design Data and a Manufacturing Technique for Spherical Hydrostatic Bearings in Machine Tool Applications
,”
Int. J. Mach. Tool Des. Res.
,
11
(
4
), pp.
293
307
.10.1016/0020-7357(71)90012-6
7.
Singh
,
N.
,
Sharma
,
S. C.
,
Jain
,
S. C.
, and
Reddy
,
S. S.
,
2004
, “
Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes
,”
Tribol. Int.
,
37
(
1
), pp.
11
24
.10.1016/S0301-679X(03)00110-5
8.
Morsi
,
S. A.
,
1972
, “
Passively and Actively Controlled Externally Pressurized Oil-Film Bearings
,”
ASME J. Tribol.
,
94
(
1
), pp.
56
63
.
9.
Wb
,
R.
,
1983
,
Hydrostatic and Hybrid Bearing Design
,
Butterworths
,
London
.
10.
Lo
,
C. Y.
,
Wang
,
C. C.
, and
Lee
,
Y. H.
,
2005
, “
Performance Analysis of High-Speed Spindle Aerostatic Bearings
,”
Tribol. Int.
,
38
(
1
), pp.
5
14
.10.1016/j.triboint.2004.04.008
11.
Roy
,
L.
, and
Laha
,
S. K.
,
2009
, “
Steady State and Dynamic Characteristics of Axial Grooved Journal Bearings
,”
Tribol. Int.
,
42
(
5
), pp.
754
761
.10.1016/j.triboint.2008.10.010
12.
Ghosh
,
B.
,
1973
, “
Load and Flow Characteristics of a Capillary Compensated Hydrostatic Journal-Bearing
,”
Wear
,
23
(
3
), pp.
377
386
.10.1016/0043-1648(73)90024-0
13.
Nicoletti
,
R.
,
2013
, “
Comparison Between a Meshless Method and the Finite Difference Method for Solving the Reynolds Equation in Finite Bearings
,”
ASME J. Tribol.
,
135
(
4
), p.
044501
.10.1115/1.4024752
14.
Zuo
,
X.
,
Wang
,
J.
,
Yin
,
Z.
, and
Li
,
S.
,
2013
, “
Performance Analysis of Multirecess Angled-Surface Slot-Compensated Conical Hydrostatic Bearing
,”
ASME J. Tribol.
,
135
(
4
), p.
041701
.10.1115/1.4024296
15.
Zuo
,
X.
,
Wang
,
J.
,
Yin
,
Z.
, and
Li
,
S.
,
2013
, “
Comparative Performance Analysis of Conical Hydrostatic Bearings Compensated by Variable Slot and Fixed Slot
,”
Tribol. Int.
,
66
, pp.
83
92
.10.1016/j.triboint.2013.04.013
16.
Sharma
,
S. C.
,
Kumar
,
V.
,
Jain
,
S. C.
,
Sinhasan
,
R.
, and
Subramanian
,
M.
,
1999
, “
A Study of Slot-Entry Hydrostatic/Hybrid Journal Bearing Using the Finite Element Method
,”
Tribol. Int.
,
32
(
4
), pp.
185
196
.10.1016/S0301-679X(99)00032-8
17.
Liang
,
P.
,
Lu
,
C.
,
Pan
,
W.
, and
Li
,
S.
,
2014
, “
A New Method for Calculating the Static Performance of Hydrostatic Journal Bearing
,”
Tribol. Int.
,
77
(
4
), pp.
72
77
.10.1016/j.triboint.2014.04.019
18.
Shenoy
,
B. S.
, and
Pai
,
R.
,
2009
, “
Steady State Performance Characteristics of Single Pad Externally Adjustable Fluid Film Bearing in the Laminar and Turbulent Regimes
,”
ASME J. Tribol.
,
131
(
2
), p.
021701
.10.1115/1.3070580
19.
Taylor
,
C. M.
, and
Dowson
,
D.
,
1974
, “
Turbulent Lubrication Theory—Application to Design
,”
ASME J. Tribol.
,
96
(
1
), pp.
36
46
.10.1115/1.3451905
20.
Brunetière
,
N.
,
2005
, “
A Modified Turbulence Model for Low Reynolds Numbers: Application to Hydrostatic Seals
,”
ASME J. Tribol.
,
127
(
1
), pp.
130
140
.10.1115/1.1829721
21.
Helene
,
M.
,
Arghir
,
M.
, and
Frene
,
J.
,
2003
, “
Numerical Study of the Pressure Pattern in a Two-Dimensional Hybrid Journal Bearing Recess, Laminar, and Turbulent Flow Results
,”
ASME J. Tribol.
,
125
(
2
), pp.
283
290
.10.1115/1.1537233
22.
Papadopoulos
,
C. I.
,
Kaiktsis
,
L.
, and
Fillon
,
M.
,
2013
, “
Computational Fluid Dynamics Thermohydrodynamic Analysis of Three-Dimensional Sector-Pad Thrust Bearings With Rectangular Dimples
,”
ASME J. Tribol.
,
136
(
1
), p.
011702
.10.1115/1.4025245
23.
Wodtke
,
M.
,
Fillon
,
M.
,
Schubert
,
A.
, and
Wasilczuk
,
M.
,
2012
, “
Study of the Influence of Heat Convection Coefficient on Predicted Performance of a Large Tilting-Pad Thrust Bearing
,”
ASME J. Tribol.
,
135
(
2
), p.
021702
.10.1115/1.4023086
24.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid–Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
, pp.
8
15
.10.1016/j.triboint.2013.03.001
25.
Dousti
,
S.
,
Cao
,
J.
,
Younan
,
A.
,
Allaire
,
P.
, and
Dimond
,
T.
,
2012
, “
Temporal and Convective Inertia Effects in Plain Journal Bearings With Eccentricity, Velocity and Acceleration
,”
ASME J. Tribol.
,
134
(
3
), p.
031704
.10.1115/1.4006928
26.
Syed
,
I.
, and
Sarangi
,
M.
,
2014
, “
Hydrodynamic Lubrication With Deterministic Micro Textures Considering Fluid Inertia Effect
,”
Tribol. Int.
,
69
, pp.
30
38
.10.1016/j.triboint.2013.08.011
27.
Lin
,
J.
,
2013
, “
Inertia Force Effects in the Non-Newtonian Couple Stress Squeeze Film Between a Sphere and a Flat Plate
,”
Tribol. Int.
,
67
, pp.
81
89
.10.1016/j.triboint.2013.07.003
28.
Brunetière
,
N.
, and
Tournerie
,
B.
,
2007
, “
Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films
,”
ASME J. Tribol.
,
129
(
4
), pp.
876
886
.10.1115/1.2768089
29.
Yacout
,
A. W.
,
Ismaeel
,
A. S.
, and
Kassab
,
S. Z.
,
2007
, “
The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance
,”
Tribol. Int.
,
40
(
3
), pp.
522
532
.10.1016/j.triboint.2006.05.007
You do not currently have access to this content.