This paper deals with the experimental analysis of the dynamic characteristics of a foil thrust bearing (FTB) designed according to specifications given by NASA scientists in 2009 (Dykas et al., 2009, “Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications,” ASME J. Eng. Gas Turbines Power, 131(1), p. 012301). The present work details the new configuration of the same test rig that was used to test start-up characteristics of the aforementioned bearing (Balducchi et al., 2013, “Experimental Analysis of the Start-Up Torque of a Mildly Loaded Foil Thrust Bearing,” ASME J. Tribol., 135(3), p. 031703). The rig has been reconfigured to test dynamic characteristics. The dynamic characteristics of the bump foil structure were measured for static loads comprised between 30 N and 150 N while measurements for the FTB were performed at 35 krpm for 30 N, 60 N, and 90 N. Excitation frequencies were comprised between 150 Hz and 750 Hz. Results showed that the dynamic stiffness of the FTB increase with excitation frequency while the equivalent damping decreases. Both stiffness and damping increase with the static load but are smaller at 35 krpm compared to 0 rpm.

References

1.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
STLE Tribol. Trans.
,
51
(
3
), pp.
254
264
.10.1080/10402000701772579
2.
Dykas
,
B.
,
Bruckner
,
R.
,
Della Corte
,
C.
,
Emonds
,
B.
, and
Prahl
,
J.
,
2009
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
.10.1115/1.2966418
3.
Heshmat
,
H.
,
Walowit
,
J.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Compliant Thrust Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
638
646
.10.1115/1.3254696
4.
Heshmat
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
,
2000
, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
,
122
(
1
), pp.
199
204
.10.1115/1.555343
5.
Iordanoff
,
I.
,
1996
, “
Paliers Axiaux Aérodynamiques à Structure à Feuilles: Analyse et Optimisation
,” Thèse de Doctorat soutenue au LGMT, Toulouse, France.
6.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1992
, “
Compliant Foil Bearing Structural Stiffness Analysis-Part 1: Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
,
114
(
2
), pp.
394
400
.10.1115/1.2920898
7.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1994
, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearings: Theoretical Considerations
,”
STLE Tribol. Trans.
,
37
(
3
), pp.
525
533
.10.1080/10402009408983325
8.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1994
, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearings: Parametric Studies
,”
STLE Tribol. Trans.
,
37
(
3
), pp.
455
462
.10.1080/10402009408983317
9.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1993
, “
Compliant Foil Bearing Structural Stiffness Analysis-Part 2: Experimental Investigation
,”
ASME J. Tribol.
,
115
(
3
), pp.
364
369
.10.1115/1.2921644
10.
Ku
,
C. P. R.
,
1994
, “
Dynamic Structural Properties of Compliant Foil Thrust Bearings—Comparison Between Experimental and Theoretical Results
,”
ASME J. Tribol.
,
116
(
1
), pp.
70
75
.10.1115/1.2927049
11.
Park
,
D.-J.
,
Kim
,
C.-H.
,
Jang
,
G.-H.
, and
Lee
,
Y.-B.
,
2008
, “
Theoretical Considerations of Static and Dynamic Characteristics of Air Foil Thrust Bearing With Tilt and Slip Flow
,”
Tribol. Int.
,
41
(
4
), pp.
282
295
.10.1016/j.triboint.2007.08.001
12.
Lee
,
Y.-B.
,
Kim
,
T. Y.
,
Kim
,
C. H.
, and
Kim
,
T. H.
,
2011
, “
Thrust Bump Air Foil Bearings With Variable Axial Load: Theoretical Predictions and Experiments
,”
STLE Tribol. Trans.
,
54
(
6
), pp.
902
910
.10.1080/10402004.2011.606957
13.
Kim
,
T. H.
,
Lee
,
Y.-B.
,
Kim
,
T. Y.
, and
Jeong
,
K. H.
,
2011
, “
Rotordynamic Performance of an Oil-Free Turbo Blower Focusing on Load Capacity of Gas Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022501
.10.1115/1.4004143
14.
San Andrés
,
L.
,
Ryu
,
K.
, and
Diemer
,
P.
,
2014
, “
Prediction of Gas Thrust Foil Bearing Performance for Oil-Free Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
137
(
3
), p.
032502.
10.1115/1.4028389
15.
Bruckner
,
R. J.
,
2004
, “
Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
”. Ph.D. dissertation, Case Western Reserve University, Cleveland, OH.
16.
Dykas
,
B.
,
2006
, “
Factors Influencing the Performance of Foil Gas Thrust Bearings for Oil-Free Turbomachinery Applications
,” Ph.D. dissertation, Case Western Reserve University, Cleveland, OH.
17.
Dykas
,
B.
,
Prahl
,
J.
,
DellaCorte
,
C.
, and
Bruckner
,
R.
,
2006
, “
Thermal Management Phenomena in Foil Gas Thrust Bearings
,”
ASME
Paper No. GT2006-91268.10.1115/GT2006-91268
18.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Three-Dimensional Thermohydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing With Radially Arranged Bump Foils
,”
Tribol. Trans.
,
54
(
3
), pp.
432
448
.10.1080/10402004.2011.556314
19.
Zhou
,
Q.
,
Hou
,
Z.
, and
Chen
,
C.
,
2009
, “
Dynamic Stability Experiments of Compliant Foil Thrust Bearing With Viscoelastic Support
,”
Tribol. Int.
,
42
(
5
), pp.
662
665
.10.1016/j.triboint.2008.09.005
20.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Design and Performance of Hybrid Air Foil Thrust Bearing
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042501
.10.1115/1.4002249
21.
Kim
,
K.-S.
,
2007
, “
An Experimental Study on the Performance of Air Foil Thrust Bearing for Application to Turbomachinery
,” Doctoral thesis, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
22.
Dickman
,
J.
,
2010
, “
An Investigation of Gas Foil Thrust Bearing Performance and Its Influencing Factors
,” Master's thesis, Case Western Reserve University, Cleveland, OH.
23.
Bruckner
,
R. J.
,
2012
, “
Performance of Simple Gas Foil Thrust Bearings in Air
,” NASA/TM, Report No. 2012-217262.
24.
Balducchi
,
F.
,
Arghir
,
M.
,
Gauthier
,
R.
, and
Renard
,
E.
,
2013
, “
Experimental Analysis of the Start-Up Torque of a Mildly Loaded Foil Thrust Bearing
,”
ASME J. Tribol.
,
135
(
3
), p.
031703
.10.1115/1.4024211
25.
Burrows
,
C. R.
,
Sayed-Esfahani
,
R.
, and
Stanway
,
R.
,
1981
, “
Comparison of Multifrequency Techniques for Measuring the Dynamics of Squeeze-Film Bearings
,”
ASME J. Lubr. Technol.
,
103
(
1
), pp.
137
143
.10.1115/1.3251601
26.
Ginsberg
,
J. H.
,
2001
,
Mechanical and Structural Vibrations Theory and Applications
,
John Wiley & Sons
, New York.
27.
San Andrès
,
L.
,
Camero
,
J.
,
Muller
,
S.
,
Chirathadam
,
T.
, and
Ryu
,
K.
,
2010
, “
Measurements of Drag Torque, Lift-Off Speed and Structural Parameters in 1st Generation Floating Gas Foil Bearings
,”
8th IFToMM International Conference on Rotordynamics
,
Seoul, Korea
, Sept. 12–15.
28.
Coleman
,
H. W.
, and
Steel
,
W. G.
, Jr.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons, Inc.
, New York, pp.
49
52
.
29.
Betta
,
G.
, and
Liguori
,
C. P. A.
,
2000
, “
Propagation of Uncertainty in a Discrete Fourier Transform Algorithm
,”
Measurement
,
27
(
4
), pp.
231
239
.10.1016/S0263-2241(99)00068-8
You do not currently have access to this content.