A new hydrostatic spherical hinge is developed in this paper to provide a large load capacity. The static and dynamic Reynolds equations in spherical coordinate system for incompressible Newtonian fluid were established using the perturbation method. Finite difference method was employed to solve the load capacity, power loss, oil flow rate, dynamic stiffness, and damping coefficients. This paper provides a new perspective for analysis on the dynamic characteristics of the spherical hinge.
Issue Section:
Hydrodynamic Lubrication
References
1.
Bicak
, M.
, and Rao
, M. D.
, 2012
, “Coupled Squeeze Film Analysis by Reissner–Mindlin Plate Elements
,” J. Vib. Control
, 18
(5
), pp. 632
–640
.10.1177/10775463114053682.
Dege
, M. M.
, Dogan
, M.
, and Holmes
, R.
, 1985
, “The Damping Capacity of a Sealed Squeeze Film Bearing
,” ASME J. Tribol.
, 107
(3
), pp. 411
–418
.10.1115/1.32610973.
Zhang
, J. X.
, and Roberts
, J. B.
, 1996
, “Solutions for the Combined Motion of Finite Length Squeeze Film Dampers Around the Bearing Center
,” ASME J. Tribol.
, 118
(3
), pp. 617
–622
.10.1115/1.28315814.
Adams
, M. J.
, Aydin
, I.
, Briscoe
, B. J.
, and Sinha
, S. K.
, 1997
, “A Finite Element Analysis of the Squeeze Flow of an Elasto-Viscoplastic Paste Material
,” J. Non-Newtonian Fluid Mech.
, 71
(1-2
), pp. 41
–57
.10.1016/S0377-0257(96)01546-75.
Yang
, J. G.
, Guo
, R.
, and Tian
, Y. W.
, 2008
, “Hybrid Radial Basis Function/Finite Element Modelling of Journal Bearing
,” Tribol. Int.
, 41
(12
), pp. 1169
–1175
.10.1016/j.triboint.2007.10.0116.
Manivasakan
, V.
, and Sumathi
, G.
, 2011
, “Theoretical Investigation of Couple Stress Squeeze Films in a Curved Circular Geometry
,” ASME J. Tribol.
, 133
(4
), p. 0417014
.10.1115/1.40040997.
Ahmad
, N.
, and Singh
, J. P.
, 2007
, “A Model for Couple-Stress Fluid Film Mechanism With Reference to Human Joints
,” Proc. Inst. Mech. Eng., Part J
, 221
(6
), pp. 755
–759
.10.1243/13506501JET2708.
Stokes
, V. K.
, 2004
, “Couple Stresses in Fluids
,” Phys. Fluids
, 9
(9
), pp. 1709
–1715
.10.1063/1.17619259.
Lin
, J. R.
, 2013
, “Inertia Force Effects in the Non-Newtonian Couple Stress Squeeze Film Between a Sphere and a Flat Plate
,” Tribol. Int.
, 67
(11
), pp. 81
–89
.10.1016/j.triboint.2013.07.00310.
Lin
, J.
, 2000
, “Squeeze Film Characteristics Between a Sphere and a Flat Plate: Couple Stress Fluid Model
,” Comput. Struct.
, 75
(1
), pp. 73
–80
.10.1016/S0045-7949(99)00080-211.
Delgado
, A.
, and San Andres
, L.
, 2010
, “A Model for Improved Prediction of Force Coefficients in Grooved Squeeze Film Dampers and Oil Seal Rings
,” ASME J. Tribol.
, 132
(3
), p. 0322023
.10.1115/1.400145912.
San Andres
, L.
, and Delgado
, A.
, 2012
, “A Novel Bulk-Flow Model for Improved Predictions of Force Coefficients in Grooved Oil Seals Operating Eccentrically
,” Proceedings of The ASME Turbo Expo 2011, Parts A and B
, Vancouver, Canada, June 6–10, pp. 499
–509
.13.
Sanandres
, L. A.
, and Vance
, J. M.
, 1988
, “Effect of Fluid Inertia on the Performance of Squeeze Film Damper Supported Rotors
,” ASME J. Eng Gas Turbines Power
, 110
(1
), pp. 51
–57
.10.1115/1.324008614.
Sanandres
, L.
, and Vance
, J. M.
, 1986
, “Effects of Fluid Inertia and Turbulence on the Force Coefficients for Squeeze Film Dampers
,” ASME J. Eng Gas Turbines Power
, 108
(2
), pp. 332
–339
.10.1115/1.323990815.
El-Shafei
, A.
, and Crandall
, S. H.
, 1991
, “Fluid Inertia Forces in Squeeze Film Dampers
,” Rotating Mach. Veh. Dyn.
, 35
, pp. 219
–228
.16.
Vishwanath
, K. P.
, and Kandasamy
, A.
, 2010
, “Inertia Effects in Circular Squeeze Film Bearing Using Herschel-Bulkley Lubricants
,” Appl. Math. Modell.
, 34
(1
), pp. 219
–227
.10.1016/j.apm.2009.04.00117.
Zhang
, J.
, Ellis
, J.
, and Roberts
, J. B.
, 1993
, “Observations on the Nonlinear Fluid Forces in Short Cylindrical Squeeze Film Dampers
,” ASME J. Tribol.
, 115
(4
), pp. 692
–698
.10.1115/1.292169518.
San Andres
, L. A.
, and Vance
, J. M.
, 1987
, “Effect of Fluid Inertia on Squeeze-Film Damper Forces for Small-Amplitude Circular-Centered Motions
,” ASLE Trans.
, 30
(1
), pp. 63
–68
.10.1080/0569819870898173119.
Ellis
, J.
, Hosseini Sianaki
, A.
, and Roberts
, J. B.
, 1990
, “The Complete Determination of Squeeze-Film Linear Dynamic Coefficients From Experimental Data
,” ASME J. Tribol.
, 112
(4
), pp. 712
–724
.10.1115/1.292032020.
Diaz
, S. E.
, and San Andrés
, L. A.
, 1999
, “A Method for Identification of Bearing Force Coefficients and Its Application to a Squeeze Film Damper With a Bubbly Lubricant
,” Tribol. Trans.
, 42
(4
), pp. 739
–746
.10.1080/1040200990898227721.
Fritzen
, C.
, 1986
, “Identification of Mass, Damping, and Stiffness Matrices of Mechanical Systems
,” ASME J. Vib. Acoust.
, 108
(1
), pp. 9
–16
.10.1115/1.326931022.
Ellis
, J.
, Roberts
, J. B.
, and Hosseini Sianaki
, A.
, 1988
, “A Comparison of Identification Methods for Estimating Squeeze-Film Damper Coefficients
,” ASME J. Tribol.
, 110
(1
), pp. 119
–127
.10.1115/1.326154923.
Szeri
, A. Z.
, 2011
, Fluid Film Lubrication
, Cambridge University Press
, Cambridge, UK
.24.
Chen
, C. H.
, Kang
, Y.
, Chang
, Y.
, Wang
, Y.
, and Lee
, H.
, 2006
, “Influence of Restrictor on Stability of the Rigid Rotor–Hybrid Bearing System
,” J. Sound Vib.
, 297
(3
), pp. 635
–648
.10.1016/j.jsv.2006.04.008Copyright © 2015 by ASME
You do not currently have access to this content.