The performance of an aerostatic bearing with a pocketed orifice-type restrictor is affected by the bearing size, pocket size, orifice design, supply pressure, and bearing load. This study proposes a modified particle swarm optimization (MPSO) algorithm to optimize a double-pad aerostatic bearing. In bearing optimization, the upper and lower bearing designs are independent and several design variables that affect bearing performance must be considered. This study also applies the concept of mutation from a genetic algorithm. The results show that the MPSO algorithm has a global search capability and high efficiency to optimize a problem with several design variables and that the mutation can provide an avenue for particles to escape from a local optimal value.

References

1.
Belforte
,
G.
,
Raparelli
,
T.
,
Viktorov
,
V.
, and
Trivella
,
A.
,
2007
, “
Discharge Coefficients of Orifice-Type Restrictor for Aerostatic Bearings
,”
Tribol. Int.
,
40
, pp.
512
521
.10.1016/j.triboint.2006.05.003
2.
Chen
,
X. D.
, and
He
,
X. M.
,
2006
, “
The Effect of the Recess Shape on Performance Analysis of the Gas-Lubricated Bearing in Optical Lithography
,”
Tribol. Int.
,
39
, pp.
1336
1341
.10.1016/j.triboint.2005.10.005
3.
Li
,
Y.
, and
Ding
,
H.
,
2007
, “
Influences of the Geometrical Parameters of Aerostatic Thrust Bearing With Pocketed Orifice-Type Restrictor on Its Performance
,”
Tribol. Int.
,
40
, pp.
1120
1126
.10.1016/j.triboint.2006.11.001
4.
Schenk
,
C.
,
Buschmann
,
S.
,
Risse
,
S.
,
Eberhardt
,
R.
, and
Tunnermann
,
A.
,
2008
, “
Comparison between Flat Aerostatic Gas-Bearing Pads With Orifice and Porous Feedings at High–Vacuum Conditions
,”
Prec. Eng.
,
32
, pp.
319
328
.10.1016/j.precisioneng.2008.01.001
5.
Chen
,
Y. S.
,
Chiu
,
C. C.
, and
Cheng
,
Y. D.
,
2010
, “
Influences of Operational Conditions and Geometric Parameters on the Stiffness of Aerostatic Journal Bearings
,”
Prec. Eng.
,
34
, pp.
722
734
.10.1016/j.precisioneng.2010.04.001
6.
Ye
,
Y. X.
,
Chen
,
X. D.
,
Hu
,
Y. T.
, and
Luo
,
X.
,
2010
, “
Effects of Recess Shapes on Pneumatic Hammering in Aerostatic Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
224
, pp.
231
237
.10.1243/13506501JET664
7.
Talukder
,
H. M.
, and
Stowell
,
T. B.
,
2003
, “
Pneumatic Hammer in an Externally Pressurized Orifice Compensated Air Journal Bearing
,”
Tribol. Int.
,
36
, pp.
585
591
.10.1016/S0301-679X(02)00247-5
8.
Bhat
,
N.
,
Kumar
,
S.
,
Tan
,
W.
,
Narasimhan
,
R.
, and
Low
,
T. C.
,
2012
, “
Performance of Inherently Compensated Flat Pad Aerostatic Bearings Subject to Dynamic Perturbation Forces
,”
Prec. Eng.
,
36
, pp.
399
407
.10.1016/j.precisioneng.2012.01.002
9.
Jeng
,
Y. R.
, and
Chang
,
S. H.
,
2013
, “
Comparison Between the Effects of Single-Pad and Double-Pad Aerostatic Bearings With Pocketed Orifices on Bearing Stiffness
,”
Tribol. Int.
,
66
, pp.
12
18
.10.1016/j.triboint.2013.04.003
10.
Lu
,
C. J.
, and
Wang
,
T. K.
,
2004
, “
New Designs of HDD Air-Lubricated Sliders via Topology Optimization
,”
ASME J. Tribol.
,
126
, pp.
171
176
.10.1115/1.1631016
11.
Jayson
,
E. M.
, and
Talke
,
F. E.
,
2005
, “
Optimization of Air Bearing Contours for Shock Performance of a Hard Disk Drive
,”
ASME J. Tribol.
,
127
, pp.
878
883
.10.1115/1.2000979
12.
Qiu
,
M.
,
Lu
,
J.
, and
Yin
,
Y.
,
2009
, “
Numerical Analysis of Non-Newtonian TEHL Line Contact Problem based on Real-Coded Genetic Algorithm
,”
Tribol. Int.
,
42
, pp.
1052
1060
.10.1016/j.triboint.2009.03.003
13.
Zhu
,
H.
, and
Bogy
,
D. B.
,
2002
, “
DIRECT Algorithm and Its Application to Slider Air-Bearing Surface Optimization
,”
IEEE Trans. Magn.
,
38
, pp.
2168
2170
.10.1109/TMAG.2002.802794
14.
Wang
,
N.
,
Tsai
,
C. M.
, and
Cha
,
K. C.
,
2009
, “
A Study of Parallel Efficiency of Modified DIRECT Algorithm Applied to Thermohydrodynamic Lubrication
,”
J. Mech.
,
25
, pp.
143
150
.10.1017/S1727719100002598
15.
Wang
,
N.
, and
Cha
,
K. C.
,
2010
, “
Multi-Objective Optimization of Air Bearings Using Hypercube-Dividing Method
,”
Tribol. Int.
,
43
, pp.
1631
1638
.10.1016/j.triboint.2010.03.009
16.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
,
4
, pp.
1942
1948
.
17.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
2000
, “
Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization
,”
IEEE World Congress on Evolutionary Computation
,
1
, pp.
84
88
.
18.
Schutte
,
J. F.
,
Koh
,
B. I.
,
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Fregly
,
B. J.
,
2005
, “
Evaluation of a Particle Swarm Algorithm for Biomechanical Optimization
,”
ASME J. Biomech. Eng.
,
127
, pp.
465
474
.10.1115/1.1894388
19.
Khajehzadeh
,
M.
,
El-Shafie
,
A.
, and
Raihan
,
T. M.
,
2010
, “
Modified Particle Swarm Optimization for Probabilistic Slope Stability Analysis
,”
Int. J. Phys. Sci.
,
5
(
15
), pp.
2248
2258
.
20.
Yan
,
Z. P.
,
Deng
,
C.
,
Zhou
,
J. J.
, and
Chi
,
D. N.
,
2012
, “
A Novel Two-Subpopulation Particle Swarm Optimization
,”
IEEE World Congress on Intelligent Control and Automation
, pp.
4113
4117
.10.1109/WCICA.2012.6359164
You do not currently have access to this content.