Extraction and testing of miniature compression specimens from localized regions of components affected by rolling contact fatigue loading can provide significant insight into material degradation. Current ASTM standards for compression testing of cylindrical specimens become too stringent and difficult to achieve when specimen size is reduced to around 1 mm in diameter. The tolerances for surface flatness, parallelism of the loading surfaces, and the perpendicularity between the axis and the loading surfaces play crucial roles in the resulting stress-strain curves under uniaxial compression loading. In this manuscript, a systematic study is performed to quantify the influence of the above geometric parameters on the stress-strain response. Based on the analysis, the allowable geometric tolerances of miniature cylindrical specimens for a valid compression tests are recommended. The analysis results are validated and the usefulness of the method is demonstrated on miniature specimens extracted from the rolling contact fatigue affected regions of high strength M50 bearing balls. The yield stress within the rolling contact fatigue affected region is shown to increase by over 12%.

References

1.
ASTM Standard
,
1990
, “
Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature
,”
1990 Annual Book of ASTM Standards
,
ASTM
,
West Conshohocken, PA
, pp.
98
105
.
2.
Bei
,
H.
,
Shim
,
S.
,
George
,
E. P.
,
Miller
,
M. K.
,
Herbert
,
E. G.
, and
Pharr
,
G. M.
,
2007
, “
Compressive Strengths of Molybdenum Alloy Micro-Pillars Prepared Using a New Technique
,”
Scr. Mater.
,
57
, pp.
397
400
.10.1016/j.scriptamat.2007.05.010
3.
Dimiduk
,
D. M.
,
Uchic
,
M. D.
, and
Parthasarathy
,
T. A.
,
2005
, “
Size-Affected Single-Slip Behavior of Pure Nickel Microcrystals
,”
Acta Mater.
,
53
, pp.
4065
4077
.10.1016/j.actamat.2005.05.023
4.
Frick
,
C. P.
,
Clark
,
B. G.
,
Orso
,
S.
,
Schneider
,
A. S.
, and
Arzt
,
E.
,
2008
, “
Size Effect on Strength and Strain Hardening of Small-Scale [1 1 1] Nickel Compression Pillars
,”
Mater. Sci. Eng. A
,
489
, pp.
319
329
.10.1016/j.msea.2007.12.038
5.
Hosemann
,
P.
,
Swadener
,
J. G.
,
Kiener
,
D.
,
Was
,
G. S.
,
Maloy
,
S. A.
, and
Li
,
N.
,
2008
, “
An Exploratory Study to Determine Applicability of Nano-Hardness and Micro-Compression Measurements for Yield Stress Estimation
,”
J. Nucl. Mater.
,
375
, pp.
135
143
.10.1016/j.jnucmat.2007.11.004
6.
Kiener
,
D.
,
Motz
,
C.
, and
Dehm
,
G.
,
2009
, “
Micro-Compression Testing: A critical Discussion of Experimental Constraints
,
Mater. Sci. Eng. A
,
505
, pp.
79
87
.10.1016/j.msea.2009.01.005
7.
Kiener
,
D.
,
Motz
,
C.
,
Schobert
,
T.
,
Jenko
,
M.
, and
Dehm
,
G.
,
2006
, “
Determination of Mechanical Properties of Copper at the Micron Scale
,”
Adv. Eng. Mater.
,
8
, pp.
1119
1125
.10.1002/adem.200600129
8.
Philippe
,
L.
,
Schwaller
,
P.
,
Burki
,
G.
, and
Michler
,
J. A.
,
2008
, “
Comparison of Microtensile and Microcompression Methods for Studying Plastic Properties of Nanocrystalline Electrodeposited Nickel at Different Length Scales
,”
J. Mater. Res.
,
23
, pp.
1383
1388
.10.1557/JMR.2008.0162
9.
Uchic
,
M. D.
,
Dimiduk
,
D. M.
,
Florando
,
J. N.
, and
Nix
,
W. D.
,
2004
, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
,
305
, pp.
986
989
.10.1126/science.1098993
10.
Uchic
,
M. D.
,
Shade
,
P. A.
, and
Dimiduk
,
D. M.
,
2009
, “
Micro-Compression Testing of FCC Metals: A Selected Overview of Experiments and Simulations
,”
JOM
,
61
, pp.
36
41
.10.1007/s11837-009-0038-2
11.
Zhang
,
H.
,
Schuster
,
B. E.
,
Wei
,
Q.
, and
Ramesh
,
K. T.
,
2006
, “
The Design of Accurate Micro-Compression Experiments
,”
Scr. Mater.
,
54
, pp.
181
186
.10.1016/j.scriptamat.2005.06.043
12.
Moser
,
B.
,
Wasmer
,
K.
,
Barbieri
,
L.
, and
Michler
,
J.
,
2007
, “
Strength and Fracture of Si Micropillars: A New Scanning Electron Microscopy-Based Micro-Compression Test
,”
J. Mater. Res.
,
22
, pp.
1004
1011
.10.1557/jmr.2007.0140
13.
Arakere
,
N.
, and
Subhash
,
G.
,
2011
, “
Work Hardening Response of M50-NiL Case Hardened Bearing Steel During Shakedown in Rolling Contact Fatigue
,”
Mater. Sci. Eng. A
,
28
, pp.
34
38
.
14.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(4), p.
041403
.10.1115/1.3209132
15.
Österlund
,
R.
, and
Vingsbo
,
O.
,
1980
, “
Phase Changes in Fatigued Ball Bearings
,”
Metall. Mater. Trans. A
,
11
, pp.
701
707
.10.1007/BF02661199
16.
Voskamp
,
A.
,
Osterlund
,
R.
,
Becker
,
P.
, and
Vingsbo
,
O.
,
1980
, “
Gradual Changes in Residual Stress and Microstructure During Contact Fatigue in Ball Bearings
,”
Metals Tech.
,
7
, pp.
14
21
.10.1179/030716980803286676
17.
Voskamp
,
A.
,
1985
, “
Material Response to Rolling Contact Loading
,”
ASME J. Tribol.
,
107
(3), pp.
359
366
.10.1115/1.3261078
18.
Voskamp
,
A.
, and
Mittemeijer
,
E.
,
1997
, “
The effect of the Changing Microstructure on the Fatigue Behaviour During Cyclic Rolling Contact Loading
,”
Zeitschrift für Metallkunde
,
88
, pp.
310
320
.
19.
Voskamp
,
A. P.
,
1998
, “
Fatigue and Material Response in Rolling Contact
,”
ASTM STP
,
1327
, pp.
152
166
.
20.
Bearings
,
R.
,
2007
, “
Dynamic Load Ratings and Rating Life
,” International Organization for Standards: International Standard ISO, 281.
21.
Lundberg, G, Palmgren, A., 1947, “Dynamic capacity of rolling bearings,”
Acta Polytech, Mech Eng Ser, Royal Swedish Acad Eng Sci,
1
, pp.
1
50
.
22.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1952
, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech.
,
Mech Eng Ser, Royal Swedish Acad Eng Sci
,
2
, pp.
5
32
.
23.
Klecka
,
M.
,
Subhash
,
G.
, and
Arakere
,
N.
,
2013
, “
Microstructure-Composition-Property Relationships in M50NiL and P675 Case Hardened Bearing Steels
,”
Trib. Trans.
pp.
1046
1059
.
24.
Voskamp
,
A.
,
2000
, “
Subsurface Residual Stress Concentrations During Rolling Contact Fatigue
,”
Mat. Sci. Forum
,
347
, pp.
346
351
.10.4028/www.scientific.net/MSF.347-349.346
25.
Bhattacharyya
,
A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2014
, “
Evolution of Subsurface Plastic Zone due to Rolling Contact Fatigue of Case Hardened Bearing Steel
,”
Int. J. Fatigue
59
, pp.
102
113
.
26.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Multiple Loading–Unloading of an Elastic–Plastic Spherical Contact
,”
Int. J. Solids Struct.
,
43
, pp.
7119
7127
.10.1016/j.ijsolstr.2006.03.006
27.
Carpenter Steel
,
1991
, “
Carpenter VIM-VAR M50 Bearing Steel
.” Available at: http://cartech.ides.com/datasheetaspx?i=101&c=TechArt&E=164.
29.
Latrobe Steel
,
2008
, “
Lescalloy M50 VIM-VAR High Performance Bearing Steel Data Sheet
.” Available at: http://www.latrobesteel.com/assets/documents/datasheets/M50.pdf
You do not currently have access to this content.