In this paper, a method facilitating the analysis of the effects of surface roughness on the lubrication of a rotating device is presented. The analysis utilizes homogenization—a suitable technique for averaging the effects of roughness as modeled by the Reynolds equation. The originality of this work lies in a novel way of deriving the so called local problems, also known as microbearing problems. It is clearly shown how this increases the computational efficiency by eliminating the dependence of the global coordinates on the formulation of these local problems. This does not only speed up the computation, it also means that the derived flow factors or flow tensors require less storage space. To provide for good usability, alongside the flow factors for the averaged Reynolds equation, the correction factors for the averaged friction torque (and force) and the expression for averaged load carrying capacity are presented here.

1.
Reynolds
,
O.
, 1886, “
On the Theory of Lubrication and Its Application to Mr. Beauchamps Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
177
, pp.
157
234
.
2.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
3.
Bayada
,
G.
, and
Chambat
,
M.
, 1986, “
The Transition Between the Stokes Equations and the Reynolds Equation: A Mathematical Proof
,”
Appl. Math. Optim.
0095-4616,
14
(
1
), pp.
73
93
.
4.
Cioranescu
,
D.
, and
Donato
,
P.
, 1999,
An Introduction to Homogenization
(
Oxford Lecture Series in Mathematics and Its Applications
Vol.
17
),
Oxford University Press
,
New York
.
5.
Jikov
,
V. V.
,
Kozlov
,
S. M.
, and
Oleĭnik
,
O. A.
, 1994,
Homogenization of Differential Operators and Integral Functionals
, translated from the Russian by G. A. Yosifian,
Springer-Verlag
,
Berlin
.
6.
Bayada
,
G.
, and
Faure
,
J.
, 1989, “
A Double Scale Analysis Approach of the Reynolds Roughness; Comments and Application to the Journal Bearing
,”
Trans. ASME, J. Tribol.
0742-4787,
111
(
2
), pp.
323
330
.
7.
Kane
,
M.
, and
Bou-Said
,
B.
, 2004, “
Comparison of Homogenization and Direct Techniques for the Treatment of Roughness in Incompressible Lubrication
,”
Trans. ASME, J. Tribol.
0742-4787,
126
(
4
), pp.
733
737
.
8.
Wall
,
P.
, 2007, “
Homogenization of Reynolds’ Equation by Two-Scale Convergence
,”
Chin. Ann. Math., Ser. B
0252-9599,
28
(
3
), pp.
363
374
.
9.
Chambat
,
M.
,
Bayada
,
G.
, and
Faure
,
J. B.
, 1988, “
Some Effects of the Boundary Roughness in a Thin Film
,”
Boundary Control and Boundary Variations (Nice, 1986)
(
Lecture Notes in Computer Science
Vol.
100
),
Springer
,
Berlin
, pp.
96
115
.
10.
Almqvist
,
A.
,
Essel
,
E. K.
,
Fabricius
,
J.
, and
Wall
,
P.
, 2008, “
Reiterated Homogenization Applied in Hydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
222
(
7
), pp.
827
841
.
11.
Almqvist
,
A.
,
Essel
,
E. K.
,
Persson
,
L. -E.
, and
Wall
,
P.
, 2007, “
Homogenization of the Unstationary Incompressible Reynolds Equation
,”
Tribol. Int.
0301-679X,
40
(
9
), pp.
1344
1350
.
12.
Bayada
,
G.
,
Ciuperca
,
I.
, and
Jai
,
M.
, 2006, “
Homogenized Elliptic Equations and Variational Inequalities With Oscillating Parameters. Application to the Study of Thin Flow Behavior With Rough Surfaces
,”
Nonlinear Anal.: Real World Appl.
1468-1218,
7
(
5
), pp.
950
966
.
13.
Benhaboucha
,
N.
,
Chambat
,
M.
, and
Ciuperca
,
I.
, 2005, “
Asymptotic Behaviour of Pressure and Stresses in a Thin Film Flow With a Rough Boundary
,”
Q. Appl. Math.
0033-569X,
63
(
2
), pp.
369
400
.
14.
Almqvist
,
A.
, and
Dasht
,
J.
, 2006, “
The Homogenization Process of the Reynolds Equation Describing Compressible Liquid Flow
,”
Tribol. Int.
0301-679X,
39
(
9
), pp.
994
1002
.
15.
Almqvist
,
A.
,
Larsson
,
R.
, and
Wall
,
P.
, 2007, “
The Homogenization Process of the Time Dependent Reynolds Equation Describing Compressible Liquid Flow
,”
Tribologia - Finnish Journal of Tribology
,
26
(
4
), pp.
30
44
.
16.
Elrod
,
H. G.
, and
Adams
,
M. L.
, 1975, “
A Computer Program for Cavitation and Starvation Problems
,”
Cavitation and Related Phenomena in Lubrication
,
D.
Dowson
,
M.
Godet
, and
C. M.
Taylor
, eds.,
Mechanical Engineering
,
London
, pp.
37
43
.
17.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2005, “
Two-Scale Homogenization of a Hydrodynamic Elrod-Adams Model
,”
Asymptotic Anal.
0921-7134,
44
, pp.
75
110
.
18.
Martin
,
S.
, 2008, “
Influence of Multiscale Roughness Patterns in Cavitated Flows: Applications to Journal Bearings
,”
Math. Probl. Eng.
1024-123X,
2008
, pp.
1
27
.
19.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2005, “
An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model
,”
Trans. ASME, J. Tribol.
0742-4787,
127
(
4
), pp.
793
802
.
20.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2006, “
Micro-Roughness Effects in (Elasto)Hydrodynamic Lubrication Including a Mass-Flow Preserving Cavitation Model
,”
Tribol. Int.
0301-679X,
39
(
12
), pp.
1707
1718
.
21.
Kane
,
M.
, and
Bou-Said
,
B.
, 2005, “
A Study of Roughness and Non-Newtonian Effects in Lubricated Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
127
, pp.
575
581
.
22.
Buscaglia
,
G. C.
,
Ciuperca
,
I.
, and
Jai
,
M.
, 2002, “
Homogenization of the Transient Reynolds Equation
,”
Asymptotic Anal.
0921-7134,
32
(
2
), pp.
131
52
.
23.
Buscaglia
,
G. C.
, and
Jai
,
M.
, 2004, “
Homogenization of the Generalized Reynolds Equation for Ultra-Thin Gas Films and Its Resolution by FEM
,”
Trans. ASME, J. Tribol.
0742-4787,
126
(
3
), pp.
547
552
.
24.
Jai
,
M.
, 1995, “
Homogenization and Two-Scale Convergence of the Compressible Reynolds Lubrication Equation Modelling the Flying Characteristics of a Rough Magnetic Head Over a Rough Rigid-Disk Surface
,”
Math. Modell. Numer. Anal.
0764-583X,
29
(
2
), pp.
199
233
.
25.
Jai
,
M.
, and
Bou-Said
,
B.
, 2002, “
A Comparison of Homogenization and Averaging Techniques for the Treatment of Roughness in Slip-Flow-Modified Reynolds Equation
,”
Trans. ASME, J. Tribol.
0742-4787,
124
(
2
), pp.
327
335
.
26.
Almqvist
,
A.
,
Essel
,
E. K.
,
Fabricius
,
J.
, and
Wall
,
P.
, 2008, “
Variational Bounds Applied to Unstationary Hydrodynamic Lubrication
,”
Int. J. Eng. Sci.
0020-7225,
46
(
9
), pp.
891
906
.
27.
Almqvist
,
A.
,
Lukkassen
,
D.
,
Meidell
,
A.
, and
Wall
,
P.
, 2007, “
New Concepts of Homogenization Applied in Rough Surface Hydrodynamic Lubrication
,”
Int. J. Eng. Sci.
0020-7225,
45
(
1
), pp.
139
154
.
28.
Lukkassen
,
D.
,
Meidell
,
A.
, and
Wall
,
P.
, 2007, “
Bounds on the Effective Behavior of a Homogenized Generalized Reynolds Equation
,”
Journal of Function Spaces and Applications
,
5
(
2
), pp.
133
150
.
29.
Buscaglia
,
G. C.
, and
Jai
,
M.
, 2001, “
A New Numerical Scheme for Non Uniform Homogenized Problems: Application to the Non Linear Reynolds Compressible Equation
,”
Math. Probl. Eng.
1024-123X,
7
, pp.
355
378
.
30.
Sahlin
,
F.
, 2008, “
Lubrication, Contact Mechanics and Leakage Between Rough Surfaces
,” Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.
31.
Almqvist
,
A.
, 2009,
On the Effects of Roughness in Lubrication
,
Lambert Academic
,
Saarbrücken
.
32.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
, 1989, “
Development and Evaluation of a Cavitation Algorithm
,”
STLE Tribol. Trans.
1040-2004,
32
(
2
), pp.
225
233
.
You do not currently have access to this content.