A method for detection of wear in thrust ball bearings coated with molybdenum disulphide (MoS2) is presented. It employs an energy feature obtained from time-frequency representation of the vibration signal. Extensive experimental studies are conducted to verify the efficacy of the proposed method for fault diagnosis of MoS2 coating. These experiments are conducted under both oscillatory and unidirectional motions. The results of vibrations are corroborated with the friction coefficient from the onset of the motion until failure develops. Through monitoring of the energy in time-frequency domain as well as the coefficient of friction, three stages of coating life are identified. They are healthy period, developing damage, and failure. It is shown that the energy feature can detect whenever wear and damage appear and solid lubricant loses its lubrication capabilities.

1.
Pritchard
,
C.
, and
Midgley
,
J. W.
, 1969, “
Effect of Humidity on Friction and Life of Unbonded Molybdenum Disulphide Films
,”
Wear
0043-1648,
13
(
1
), pp.
39
50
.
2.
Black
,
A. L.
,
Dunster
,
R. W.
, and
Sanders
,
J. V.
, 1966, “
Molybdenum Disulphide Deposits—Their Formation and Characteristics on Steel Balls
,”
Wear
0043-1648,
9
(
6
), pp.
462
476
.
3.
Palmer
,
E. B.
, 1960, “
Jet and Space Age Lubrication
,”
Ind. Lubr. Tribol.
0036-8792,
12
(
2
), pp.
12
17
.
4.
Campbell
,
M. E.
,
Loser
,
J. B.
, and
Sneegas
,
E. S.
, 1966, “
Solid Lubricants
,”
NASA
Report No. SP-5059.
5.
Kim
,
K.
, and
Korsunsky
,
A. M.
, 2008, “
Exponential Evolution Law of Fretting Wear Damage in Low-Friction Coatings for Aerospace Components
,”
Surf. Coat. Technol.
0257-8972,
202
(
24
), pp.
5838
5846
.
6.
Zhu
,
M. H.
, and
Zhou
,
Z. R.
, 2001, “
An Investigation of Molybdenum Disulfide Bonded Solid Lubricant Coatings in Fretting Conditions
,”
Surf. Coat. Technol.
0257-8972,
141
(
2–3
), pp.
240
245
.
7.
Zhu
,
X. D.
,
Lauwerens
,
W.
,
Cosemans
,
R.
,
Van Stappen
,
M.
,
Celis
,
J. P.
,
Stals
,
L. M.
, and
He
,
J. W.
, 2003, “
Different Tribological Behavior of MoS2 Coatings Under Fretting and Pin-on-Disk Conditions
,”
Surf. Coat. Technol.
0257-8972,
163–164
, pp.
422
428
.
8.
Spalvins
,
T.
, 1987, “
A Review of Recent Advances in Solid Film Lubrication
,”
J. Vac. Sci. Technol. A
0734-2101,
5
(
2
), pp.
212
219
.
9.
Singer
,
I. L.
,
Fayeulle
,
S.
, and
Ehni
,
P. D.
, 1996, “
Wear Behavior of Triode-Sputtered MoS2 Coatings in Dry Sliding Contact With Steel and Ceramics
,”
Wear
0043-1648,
195
(
1–2
), pp.
7
20
.
10.
Fayeulle
,
S.
,
Ehni
,
P. D.
, and
Singer
,
I. L.
, 1990, ”
Role of Transfer Films in Wear of MoS2 Coatings
,”
Proceedings of the 16th Leeds-Lyon Symposium on Tribology
,
D.
Dowson
,
C. M.
Taylor
, and
M.
Godet
, eds.,
Elsevier
,
New York
, pp.
129
138
.
11.
Wahl
,
K. J.
,
Dunn
,
D. N.
, and
Singer
,
I. L.
, 1999, “
Wear Behavior of Pb-Mo-S Solid Lubricating Coatings
,”
Wear
0043-1648,
230
(
2
), pp.
175
183
.
12.
Santos
,
L. V.
,
Trava-Airoldi
,
V. J.
,
Iha
,
K.
,
Corat
,
E. J.
, and
Salvadori
,
M. C.
, 2001, “
Diamond-Like-Carbon and Molybdenum Disulfide Nanotribology Studies Using Atomic Force Measurements
,”
Diamond Relat. Mater.
0925-9635,
10
(
3–7
), pp.
1049
1052
.
13.
Zhang
,
H. S.
, and
Komvopoulos
,
K.
, 2009, “
Scale-Dependent Nanomechanical Behavior and Anisotropic Friction of Nanotextured Silicon Surfaces
,”
J. Mater. Res.
0884-2914,
24
(
10
), pp.
3038
3043
.
14.
Johnson
,
R. L.
,
Godfrey
,
D.
, and
Bisson
,
E. E.
, 1946, “
Friction of Solid Films on Steel at High Sliding Velocities
,”
National Advisory Committee for Aeronautics
,
NACA
,
Cleveland, OH
.
15.
Ma
,
X. G.
,
Komvopoulos
,
K.
,
Wan
,
D.
,
Bogy
,
D. B.
, and
Kim
,
Y. S.
, 2003, “
Effects of Film Thickness and Contact Load on Nanotribological Properties of Sputtered Amorphous Carbon Thin Films
,”
Wear
0043-1648,
254
(
10
), pp.
1010
1018
.
16.
Komvopoulos
,
K.
, and
Gong
,
Z. Q.
, 2007, “
Stress Analysis of a Layered Elastic Solid in Contact With a Rough Surface Exhibiting Fractal Behavior
,”
Int. J. Solids Struct.
0020-7683,
44
(
7–8
), pp.
2109
2129
.
17.
Nandi
,
A. K.
, 2000, “
Advanced Digital Vibration Signal Processing for Condition Monitoring
,”
Proceedings of COMADEM2000
,
H. C.
Pusey
and
R.
Rao
, eds., pp.
129
143
.
18.
Samanta
,
B.
, and
Al-Balushi
,
K. R.
, 2003, “
Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features
,”
Mech. Syst. Signal Process.
0888-3270,
17
(
2
), pp.
317
328
.
19.
Li
,
R. Q.
,
Chen
,
J.
,
Wu
,
X.
, and
Alugongo
,
A. A.
, 2005, “
Fault Diagnosis of Rotating Machinery Based on SVD, FCM and RST
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
27
(
1–2
), pp.
128
135
.
20.
Tandon
,
N.
, and
Choudhury
,
A.
, 1999, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
0301-679X,
32
(
8
), pp.
469
480
.
21.
Wang
,
W. J.
, and
Mcfadden
,
P. D.
, 1993, “
Early Detection of Gear Failure by Vibration Analysis. I. Calculation of the Time-Frequency Distribution
,”
Mech. Syst. Signal Process.
0888-3270,
7
(
3
), pp.
193
203
.
22.
Baydar
,
N.
, and
Ball
,
A.
, 2001, “
A Comparative Study of Acoustic and Vibration Signals in Detection of Gear Failures Using Wigner-Ville Distribution
,”
Mech. Syst. Signal Process.
0888-3270,
15
(
6
), pp.
1091
1107
.
23.
Ocak
,
H.
,
Loparo
,
K. A.
, and
Discenzo
,
F. M.
, 2007, “
Online Tracking of Bearing Wear Using Wavelet Packet Decomposition and Probabilistic Modeling: A Method for Bearing Prognostics
,”
J. Sound Vib.
0022-460X,
302
(
4–5
), pp.
951
961
.
24.
Zheng
,
G. T.
, and
McFadden
,
P. D.
, 1999, “
A Time-Frequency Distribution for Analysis of Signals With Transient Components and Its Application to Vibration Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
121
(
3
), pp.
328
333
.
25.
Neild
,
S. A.
,
Williams
,
M. S.
, and
McFadden
,
P. D.
, 2003, “
Nonlinear Vibration Characteristics of Damaged Concrete Beams
,”
J. Struct. Eng.
0733-9445,
129
(
2
), pp.
260
268
.
26.
Lovell
,
M. R.
,
Khonsari
,
M. M.
, and
Marangoni
,
R. D.
, 1996, “
A Finite Element Analysis of the Frictional Forces Between a Cylindrical Bearing Element and MoS2 Coated and Uncoated Surfaces
,”
Wear
0043-1648,
194
(
1–2
), pp.
60
70
.
27.
Lovell
,
M. R.
,
Khonsari
,
M. M.
, and
Marangoni
,
R. D.
, 1997, “
Parameter Identification of Hysteresis Friction for Coated Ball Bearings Based on Three-Dimensional FEM Analysis
,”
ASME J. Tribol.
0742-4787,
119
(
3
), pp.
462
470
.
28.
Lovell
,
M. R.
,
Khonsari
,
M. M.
, and
Marangoni
,
R. D.
, 1997, “
Frictional Analysis of MoS2 Coated Ball Bearings: A Three-Dimensional Finite Element Analysis
,”
ASME J. Tribol.
0742-4787,
119
(
4
), pp.
754
763
.
29.
Lovell
,
M. R.
,
Khonsari
,
M. M.
, and
Marangoni
,
R. D.
, 1996, “
Dynamic Friction Measurements of MoS2 Coated Ball Bearing Surfaces
,”
ASME J. Tribol.
0742-4787,
118
(
4
), pp.
858
864
.
30.
Seitzman
,
L. E.
, and
Wahl
,
K. J.
, 1996, “
A Chemical Diagnostic for Failure Prediction of Solid Lubricated Systems
,”
Surf. Coat. Technol.
0257-8972,
86–87
(
1–3
), pp.
455
459
.
31.
Robin
,
P. C.
,
Gitzhofer
,
F.
,
Fauchais
,
P. L.
, and
Boulos
,
M. I.
, 2007, “
Lamb Waves Monitoring of the Thermomechanical Aging Effects in Ceramic Coatings
,”
Surf. Coat. Technol.
0257-8972,
201
(
18
), pp.
7764
7774
.
32.
Cohen
,
L.
, 1989, “
Time Frequency-Distributions—A Review
,”
Proc. IEEE
0018-9219,
77
(
7
), pp.
941
981
.
33.
Qian
,
S.
, and
Chen
,
D.
, 1996,
Joint Time-Frequency Analysis: Methods and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
Wigner
,
E.
, 1932, “
On the Quantum Correction for Thermodynamic Equilibrium
,”
Phys. Rev.
0031-899X,
40
(
5
), pp.
0749
0759
.
35.
Ville
,
J.
, 1948, “
Theorie et applications de la notion de signal analytique
,”
Cables Transm.
0007-9308,
2A
(
1
), pp.
61
74
.
36.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
, 1980, “
The Wigner Distribution—A Tool for Time-Frequency Signal Analysis.3. Relations With Other Time-Frequency Signal Transformations
,”
Philips J. Res.
0165-5817,
35
(
6
), pp.
372
389
.
37.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
, 1980, “
The Wigner Distribution—A Tool for Time-Frequency Signal Analysis.1. Continuous-Time Signals
,”
Philips J. Res.
0165-5817,
35
(
3
), pp.
217
250
.
38.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
, 1980, “
The Wigner Distribution—A Tool for Time-Frequency Signal Analysis.2. Discrete-Time Signals
,”
Philips J. Res.
0165-5817,
35
(
4–5
), pp.
276
300
.
39.
Flandrin
,
P.
, and
Goncalves
,
P.
, 1996, “
Geometry of Affine Time-Frequency Distributions
,”
Appl. Comput. Harmon. Anal.
1063-5203,
3
(
1
), pp.
10
39
.
40.
Flandrin
,
P.
, and
Martin
,
W.
, 1984, “
A General Class of Estimators for the Wigner-Ville Spectrum of Nonstationary Processes
,”
Systems Analysis and Optimization of Systems
(
Lecture Notes in Control and Information Sciences
),
Springer
,
Berlin
, pp.
15
23
.
41.
Flandrin
,
P.
, 1984, “
Some features of time-frequency representations of multi component signals
,”
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
, pp.
41B.44.41
41B.44.44
.
42.
Auger
,
F.
,
Lemoine
,
O.
,
Gonçalvès
,
P.
, and
Flandrin
,
P.
, 1998, “
Time-Frequency Toolbox
,” Centre National de la Recherché Scientifique, France, and Rice University, Houston, TX.
43.
Mattox
,
D. M.
, 1998,
Handbook of Physical Vapor Deposition (PVD) Processing
,
Noyes
,
Park Ridge, NJ
.
You do not currently have access to this content.